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Abstract

In this paper we describe and characterize an informational tool which is primarily useful for

improving the performance of noisy memory systems: re-encoding. Re-encoding is the process

of periodically attempting to restore damaged or decayed memories to a better state. This can

help avoid the accumulation of errors which ultimately leads to total information loss. We also

show that a Bayesian form of re-encoding in the human mind could be responsible for a number of

features of human memory including constructed memory, the poor correlation between memory

accuracy and con�dence, rehearsal e�ects, and speci�c spacing e�ects. It can also explain the

observed way that memories decay over time.

1 Introduction

In this paper we have three primary goals: (1) to introduce the idea of re-encoding information for

improved transmission and memory storage, (2) to show that re-encoding can explain several well

known features of human memory, and (3) to provide some baseline theoretical results regarding re-

encoding. The human memory provides a good introduction to the topic, so I begin by discussing

application.

Human memory displays a wide array of quirks and tendencies that are di�cult to explain in a

well optimized memory system. In this paper we examine �ve well documented memory phenomena

which currently lack a unifying theoretical explanation. One such phenomenon is constructed mem-

ory, a phenomenon where the brain creates false memories to �ll in gaps or to �t better with other

available information.1 Relatedly, there is generally poor correlation between memory accuracy and
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the con�dence people have in their memories.2 Another quirk is the retrieval or testing e�ect in which

being asked to explicitly recall a piece of information increases a subjects later ability to recall that in-

formation.3 The spaced recall e�ect builds on the retrieval e�ect and tells us the greatest performance

improvement will be seen if the retrievals are spaced evenly in time.4 Finally, there is the empirical

shape of the function relating memory performance to time.5

In this paper we propose a novel mechanism which explains all �ve of these previously disparate

e�ects: Bayesian re-encoding. Bayesian re-encoding is a process where an agent examines the current,

potentially damaged, state of a memory and then restores that memory to what they believe was most

likely its original state. Consider a piece of paper with text �Econ_mics� where the blank represents a

letter that is smudged to the point of illegibility. Using knowledge of the language and context, one can

conclude the the word was probably originally �Economics�. Knowing this, one can erase the word and

rewrite �Economics�, re-encoding the information and resetting the memory to a pristine un-decayed

state. The newly re-encoded word is easier to read and more resilient to possible future smudges. This

is the idea behind our proposed Bayesian re-encoding model. To our knowledge this type of active

Bayesian re-encoding has not been previously considered. The closest area of the literature would be

the use of error correction codes in computing, but that approach is very local and can only be applied

to very limited memory errors (Chen and Hsiao, 1984).

How does Byaesian memory re-encoding explain the memory feature of interest? The following

paragraphs discuss how re-encoding can explain overcon�dence and constructed memory; rehearsal

and spacing e�ects; and the rate of memory decay.

To begin, we explain the lack of relation between memory accuracy and memory quality. As we

show, the re-encoding process destroys information about how accurate a memory was before it was re-

encoded. The information about how decayed a memory was before is wiped away during the Bayesian

re-encoding process.6 This explains the disconnect between con�dence and memory accuracy. If we

combine this loss of quality information with the Bayesian way new evidence is incorporated into beliefs

during a re-encoding we can also explain constructed memory.

Given the loss of quality information, why use re-encoding? Re-encoding a memory does improve

memory performance by resetting the accumulation errors and this bene�t can explain the bene�ts

2Simons et al. (2010); Chua et al. (2004); and Leippe (1980)
3Brewer et al. (2010)
4Mulligan and Peterson (2014); Jacoby (1978)
5Ebbinghaus (1885); Averell and Heathcote (2011)
6This information can be stored elsewhere but it is no longer present in the original data. Using extra memory space

to store information about data accuracy is generally less useful than devoting that space to storing the original data
with greater redundancy.
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of explicit recall. Given that recollection could logically trigger a re-encoding, adding a re-encoding

should improve memory performance. Further, in cases with multiple re-encodings, the bene�t is

greatest when they are evenly spaced, consistent with the observed rehearsal spacing e�ect.7

Empirical observations show that memories have a constant or decreasing hazard rate.8 A constant

rate of forgetting contradicts the way errors accumulate in most memory systems. However, re-encoding

resets memory decay patterns in a way that keeps the hazard rate constant and approximates power

law decay well.

While explanations have been o�ered for most of the described memory features other than the

power law of decay, most of these explanations do not arise from an optimizing Bayesian framework

with the exception of some explanations for constructed memory.9 Further, no existing theory provides

a uni�ed explanation for all of these phenomena.

Contributing to the realism of our concept, there is also some neurological evidence which is con-

sistent with re-encoding in the human brain. Buhry et al. (2011) �nd that the brain essentially replays

memories during memory formation and maintenance. This could easily produce a re-encoding e�ect.

Section 2 establishes a novel model of memory systems. Section 3 provides theoretical results

showing how the re-encoding process destroys information. Section 3.2 shows that re�encoding will be

bene�cial if the memory performance function is locally concave over short time frames. In section 3.3,

we show that regular re-encoding leads to consistent forgetting rates which strongly resemble those

that have been observed experimentally.10

In Section 4, we generalize several results from the memory discussion both theoretically and con-

ceptually by dropping a major symmetry assumption and moving to a more abstract setting. Memory

behaves like a sequence of noisy information channels. With imperfect memory, a person is playing a

game of telephone with their future self. By correcting errors as they go, the player can do better than

by letting them accumulate between channels. However, memory is not the only environment which has

this structure, Many telecommunications and social environments involve passing information through

multiple agents in sequence.

Finally, in Section 5 we consider non-Bayesian re-encoding schemes. In this chapter we o�er a

number of results which can make it easier to �nd the utilitarian optimal re-encoding, although in

7See Mulligan and Peterson, 2014 and Jacoby, 1978. Note that this is somewhat di�erent than the most commonly
studied spacing e�ect where spaced exposures to stimuli generate more persistent memories. For an example of that
spacing e�ect see Leicht and Overton (1987).

8Ebbinghaus (1885); Averell and Heathcote (2011)
9The exception is constructed memory where a Bayesian explanation has been o�ered by Hemmer and Steyvers (2009)

10Murre and Dros (2015); Averell and Heathcote (2011)
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general this problem remains di�cult.

2 Model Environment

Consider an environment where an agent wishes to remember a state of the world. They learn the

state of the world and set it into memory at time t = 1 and use it later at t = τ .

Formally, there is a state of the world θ ∈ Θ. The state of the world is stored in a memory system.

Conceptually, a memory system could be a hard drive, a brain, or a piece of paper with a password

written on it. Any physical system that encodes information can act as a memory system. The memory

system can is always in some memory state m ∈ M. For example, if the memory system is made up

of 4 bits, one memory state would be (1, 0, 1, 0). We assume that |M| ≥ |Θ| and that |M| and |Θ|

are both �nite so Θ = {θ1, θ2, ..., θ|Θ|} and M = {m1,m2, ...,m|M|}. This �nite approach simpli�es

notation dramatically.

A memory system generally has three parts: an encoding which moves information into the memory

medium, storage which holds the information over time, and retrieval which extracts the information

from the memory medium when it is needed.

In our model, the encoding is a mapping from Θ to M. We call the range of this mapping the set

of initial memory states or the set of encoding states. We denote the memory state which maps from

θ as m̃θ and the set of all encoding states as M̃ ⊂ M. We do not require that the encoding be chosen

optimally, although we will be using optimal encodings in the examples. For future convenience we

de�ne the |Θ| × |M| encoding matrix N [i, j] = 1 if m̃θj = mi and 0 otherwise. We assume that N is

deterministic, as there is no bene�t to stochastic encoding.

The storage part of the model examines what happens to the memory state over time. Say there is a

|M|×|M|Markov transition matrixD whereD[i, j] is the probability of memory statemj transitioning

to memory state mi in one period. Let α ∈ ∆M be a distribution over memory states represented as

a vector. The matrix D can be used as a transformation on such distributions D : ∆M → ∆M where

Dα represents the distribution over memory states after a period of decay.

The probability of being in memory state mi given initial memory state m̃θ = mj after t periods

is given by

Dt[i, j]
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Note, we use brackets to indicate elements of matrices and vectors because we will be using powers

and subscripts of matrices, making standard notation confusing.

The retrieval part of the model is mapping from retrieval time and memory state to posterior over

states of the world. We require this be done using Bayes Theorem, so the posterior probability of the

initial state θ given memory state m at time t

γ(θi|mj , t) =
(DtNei)[j]π[i]∑|Θ|

k=1(NDtek)[j]π[k]

Where π(θ) is the prior probability of state θ and ei is a vector with a 1 in place i and a 0 everywhere

else.

Because we assume that the retrieval is done in a Bayesian way, we can de�ne a memory system

through D and N .

At time τ , after updating their belief based on the memory state, the player will be given the

opportunity to pick an action a ∈ Θ. We assume a matching-based utility.

u(a, θ) = 1(a = θ)

This utility function allows us to avoid considering trade-o�s between memory precision and re-

silience, and lets us focus on re-encoding.

This provides an optimal action picking strategy a(m, t) for the agent.

a (mi, t) = argmax
j

(
DtNej

)
[i]π[j]

Note that this gives the index of the optimal action. We can represent this as an |M| × |Θ| action

matrix At where At[i, j] = 1 if a (mj , t) = i and 0 otherwise

Given a(m, t) and �nal distribution of memory states DτNπ, we can derive the raw state dependent

performance function

ρ(τ) =
∑
i

p (a(m, t) = θi|DτNei)π(θ) = Tr(ADτNΠ) (1)

Which re�ects the probability of the agent correctly remembering θ after τ periods. Here Π is a

diagonal matrix with π along the diagonal.

Remark 1. The principal of Blackwell (1953) dominance and garblings guarantees that ρ(τ) is weakly
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Figure 1: Binary memory system. n = 2 and |Θ| = 2

decreasing.

In addition, by construction, ρ(τ) ∈ [0, 1]. Having outlined the general de�nition and properties of

a memory system and performance function, we present a few examples.

2.1 Binary Memory System Example

First we consider a relatively standard memory system based on bits.

Take a binary memory system with n bits. There are two states of the world and therefore two

initial encoding states (1, 1, 1, ... and 0, 0, 0, ...). Memory states decay through bit �ips, and every bit

�ips probability δ each period.

This memory system can be represented by the network picture in Figure 1.

Assuming n is odd, the performance function in this case is given by

ρ(t) = 1−BinomCDF
(
n−1
2 , b(t), n

)
Where b(t) = 0.5 + 0.5(1 − 2δ)t is the probability of a bit being in the correct position after t

periods. This is essentially saying that the answer will be correct as long as the majority of bits are

in the correct position. Here b(t) gives the probability of a bit being in the correct position after t
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periods.

2.2 Re-encoding

Having established what a memory system is, we move on to explaining re-encoding. Re-encoding is

essentially a way of resetting the memory decay process.

De�nition 1. A re-encoding is a mapping between memory states which is applied to the memory state

between two given Markov decay periods. We represent a re-encoding as a stochastic matrix R where

R[i, j] is the probability of switching memory state mj to memory state mi during the re-encoding.

2.2.1 Bayesian Re-encoding

In general re-encodings can take many forms, but we will focus on a speci�c, intuitive type of re-

encoding.

De�nition 2. If a Bayesian re-encoding occurs at time t, thenmt+1 = m̃θ̂, where θ̂ = argmaxθ γ(θ|mt, t).

Here mt is the memory state at time t. In other words re-encoding means �nding the most likely

initial state given the current memory state and then setting the memory system to the corresponding

encoding state. Note that if |M| = |Θ| then it is possible for every memory state to be an encoding

state. In this case, re-encoding would do nothing. This is why we assume |M| ≥ |Θ| in our discussion.

In the binary case, re-encoding will revert the memory state to the initial memory state that is most

similar to the current memory state in terms of single symbol mutations. For example, if the initial

memory states are (1, 1, 1) and (0, 0, 0) and the current memory state is (1, 1, 0), then re-encoding will

revert to (1, 1, 1).

We focus speci�cally on Bayesian re-encoding within the broader scope of re-encodings because it

is easy to work with, performs well when N is well chosen, and because it makes intuitive sense. It is

also optimal in some environments, but we will leave the question of optimal re-encoding until Section

5.

A re-encoding scheme or plan is a sequence of time periods with re-encoding occurring after each

listed period.

2.3 Absorbing Star Memory System Example

Now we consider a novel memory system to give another example of Bayesian re-encoding.
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Figure 2: Absorbing star memory system. k = 3 and |Θ| = 3

This structure has k∗|Θ|+1 states. There is one absorbing m̄ state in the middle and then for each

θ there are k states including the initial encoding state m̃θ = m1
θ and a sequencem

i
θ for i = {2, 3, ..., k}.

Each period, if the memory state is mi
θ for i < k, then the memory state transitions to mi+1

θ with

probability δ and remains the same with probability 1 − δ. If the current memory state is mk
θ then

it transitions to m̄ with probability δ and remains the same with probability 1− δ. See Figure2 for a

visualization of the transitions

The performance function for the absorbing star is

ρ(t) = 1
|Θ| +

(
|Θ|−1
|Θ|

)
BinomCDF (k, δ, t)

In the absorbing star, re-encoding would place the memory state back at the tip of whichever arm

it was currently on. For example, m3
3 would be reverted to m1

3. If the current state was m̄, a random

action would be selected.

2.4 Simplex-Like Memory Structures

To show results in a simple and easy to interpret manner, we impose some additional structure on the

setting. First we de�ne a symmetry condition.

Let P (m,m′, D) be the set of transition probability sequences along all paths between m and m′

based on the stochastic transition matrix D. Example if one path between m and m′ includes a step

with probability 0.5 and another step with probability 0.23, and no other steps, then P (m,m′, D)
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would include the sequence (0.5,0.23) as an element. Note steps where the memory state does not

change must still be included in the sequence. Intuitively, P (m,m′, D) is the position of m′ relative

to m as de�ned by possible paths between the two.

De�ne ξ(m) as an ordered list of |Θ| sets of probability sequences such that ξ(m)[i] = P (m̃θi ,m,D)∀i.

Essentially, ξ(m) can be thought of as coordinates within the network relative to the encoding states.

De�nition 3. A memory system is Simplex-Like if it satis�es the following. Take any ordered list

of |Θ| sets of probability sequences ξ̃and ξ̃′ a permutation of ξ̃. Let K(ξ̃) be the number of memory

states m such ξ̃ = ξ(m). It must be that K(ξ̃)=K(ξ̃′).

We call this Simplex-Like because it guarantees that each encoding memory state is essentially

�equidistant� from every other encoding state where distance is taken along every possible path. The

graphs of such memory systems can be �tted symmetrically in simplexes (of dimension greater than 1)

with the encoding states as end points. The K(ξ) gives the count of memory states in the same relative

position. The condition requires that for any group of memory states in some �position� relative to

each encoding state in some order there must be an equally large set of memory states in the equivalent

position relative to the encoding states in every other order.

One immediate e�ect of simplex-like memory systems when combined with uniform π is that the

player is equally likely to confuse any pair of states. Formally, p (a = θi|θj) = p (a = θk|θl)∀θi ̸=

θj , θk ̸= θl because for every memory state leading θi to be chosen when the true state was θj there is

an equally probable memory state leading θk to be chosen when the true state was θl.

Simplex-Like is a strong symmetry condition, but it applies to a signi�cant number of interesting

memory systems. Both the two-state binary example and the absorbing star example previously

introduced are simplex-like. More generally, any absorbing star memory system is simplex-like. Binary

memory systems with arbitrary numbers of states are often approximately simplex-like when there is

independent bit-wise decay and encodings are optimal, but there are sometimes small deviations for

technical or rounding reasons.11 This near simplex-like tendency comes from the fact that it is generally

better to space out encoding states as much as possible to avoid confusion. For example, in the case

with case with |Θ| = 3, independent bit �ip errors, and three bits, an optimal set of initial encodings

would be (1, 1, 1), (0, 0, 1), (1, 0, 0). This creates a simplex-like memory setting, because each initial

encoding has two di�erences from each other initial encoding.

To illustrate how the de�nition of Simplex-Like works in practice, we provide a simple example of

11Lin et al. (2018)
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Figure 3: A simple memory system to illustrate the de�nition of Simplex-Like. |Θ| = 2

a non-trivial simplex-like memory system.

2.5 Basic Simplex-Like Example

Consider a four state memory system with |Θ| = 2. There are two encoding states, m1 and m2, and

two non-encoding states m′
1 and m′

2. Memory state m1 transitions to m′
1 with a probability of 0.6 and

transitions to m′
2 with a probability of 0.4. Memory state m2 transitions to m′

2 with a probability of

0.6 and transitions to m′
1 with a probability of 0.4. There are no other transitions.12 Figure 3 shows

this memory system visually.

This memory system contains no cycles which makes notation easier, since there are no in�nite

paths and the number of paths is itself �nite. We begin by considering the non-encoding states. There

is one path leading from m1 to m′
1. It has one step with a probability of 0.6. There is also one path

from m2 to m′
1 which consists of a single step of probability 0.4. Therefore ξ(m1) = [{[0.6]}, {[0.4]}].

The �rst element of the list is the set of paths from m1 to m′
1, which has only one element of length

one. The second element is the set of paths from m2 to m′
1 which again has only one element of length

one. Conversely ξ(m2) = [{[0.4]}, {[0.6]}]. The �rst element of the list is the set of paths from m1 to

12Note that the encoding states are not chosen optimally in this example.
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m′
2, and the second element is the set of paths from m2 to m′

2.

No paths lead from any encoding state to any encoding state (in fact no paths lead to any en-

coding state at all). Therefore ξ(m1) = ξ(m2) = [ϕ, ϕ]. We now consider the next part of the

de�nition. The list [{[0.6]}, {[0.4]}] has only one permutation, [{[0.4]}, {[0.6]}]. As we have shown

K ([{[0.6]}, {[0.4]}]) = L ([{[0.6]}, {[0.4]}]) = 1 so that part of the de�nition is satis�ed. In addition

[ϕ, ϕ] either has no permutation or is its own permutation, so K ([ϕ, ϕ]) = 2 satisfying the de�nition

trivially. K(•) = 0 for any ξ not mentioned since we have already accounted for ξ(m) for all m in the

system. Therefore, the de�nition is satis�ed.

3 Psychological Results

Having fully established our setup, we now provide the results which explain the observed quirks of

human memory. For this section we assume memory systems are simplex-like and that the prior π is

uniform.

3.1 Constructed Memory and Con�dence

We begin by talking about constructed memory and the connection between con�dence and memory

quality. Both of these results come about as the result of the following result:

Proposition 1. Given, simplex like memory, uniform prior, and matching-based utility, the probability

of selecting action action, a, t periods after a bayesian re-encoding depends only on the immediately

previous Bayesian re-encoding and t.

For proof see Appendix A.1.

3.1.1 Constructed Memory

A constructed memory is a false but seemingly real memory which is often, but not always, created

by the brain to �ll a gap or match with other evidence.13 For example, if a person's parents regularly

talk about a time when the Christmas ham got lit on �re, that person might develop a vivid memory

of the event even if they were too young to form long term memories or they weren't there. Along a

similar vein, Roediger and McDermott (1995) show that an experimenter can create false memories

13Schacter (2001); Stark et al. (2010)
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of a word in a list by including many associated words. The brain notices the pattern and �lls in the

blanks.

Proposition 1 tells us that conditional action probabilities depend only on the previously encoded

state of the world. Once a false state of the world has been encoded, it will have the same persistence

as a true state of the world.

For example, say a coin �ip is encoded as (1, 1, 1, ...) for heads or (0, 0, 0, ...) for tails. Bits �ip with

some �xed probability. The true state was tails, encoded originally as (0, 0, 0, ...). After some time,

the memory is in a state with a near even number of 1s and 0s with slightly more 1s. The player would

re-encode their memory to (1, 1, 1, ...) essentially constructing a memory of heads.

Constructed memory could also happen in the model in response to outside information. Consider

a similar situations with a coin �ip encoded in bits. The true state was tails, but after some time the

�ipping of bits leads to an uninformative memory state with an identical number of 1s and 0s. Say

that the player receives some informative exogenous signals indicating that the coin �ip was heads.

Now heads is the posterior mode, and the memory is re-encoded as (1, 1, 1, ...). Someone telling the

player the coin �ip came up heads could cause the player to construct a memory of heads.

The concept of a Bayesian reconstruction source for false or distorted memory has been considered

by psychologists Hemmer and Steyvers (2009). Their experiment found evidence which was in line

with the Bayesian reconstruction hypothesis.

3.1.2 Con�dence

In the constructed memory example, we see that re-encoding e�ectively deletes all of the information

a memory state contains about its quality. Consider the two state binary encoding environment. A

highly informative memory state will have a much higher proportions of 1 or 0s, while an uninformative

memory will have a similar number of each. During a re-encoding step, a memory state with just one

more 1 will be re-encoded as all 1s. A very weak signal becomes indistinguishable from a strong one. In

this case a person cannot know how much con�dence they should actually have in a speci�c memory.

This is consistent with the general observation that memory accuracy has little connection to a

person's con�dence in that memory.14

14Simons et al. (2010); Chua et al. (2004); and Leippe (1980)
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3.2 Bene�ts of Re-encoding

Because information is destroyed by the re-encoding process, re-encoding has a signi�cant cost, but it

can also have substantial bene�ts. This is because many memory systems move from initial �stable�

memory states to much less stable ones over time. Here �stability� refers to a tendency for the memory

state to maintain a distinctly recognizable origin rather than the tendency for the state to remain

exactly the same.

Consider the extreme case of the absorbing star with arm length k. Over time, the memory state

moves toward the absorbing middle of the star, but it can only move one place per period. The original

state only becomes unrecognizable if the memory state reaches the absorbing state. If one were to

re-encode every k − 1 periods, the memory would never reach the absorbing state, and an agent with

this memory system would never make a mistake.

One could conceivably construct environments where memory states tend to become more stable

over time. For example, say that memories are encoded as m̃θ. Each period, the memory state

transitions to the uninformative m0 with probability 0.25. With probability 0.75 it transitions to

the correct vault state m∗
θ. Memories in m0 and m∗

θ do not transition. In this setting re-encoding

only causes problems. However such environments are rarely realistic representation of actual memory

systems, as they generally imply a very poorly chosen initial encoding. In the vaulting example, it is

obviously better to initially encode memories with the vault states.

This brings the question of precisely when re-encoding can be helpful

Proposition 2. Given, simplex like memory, uniform prior, and matching-based utility, for at least

one Bayesian re-encoding to be weakly performance improving for some τ , it is necessary and su�cient

to show that ∃τ1, τ2 such that τ1 + τ2 = τ and ρ(τ1 + τ2) ≤ |Θ|
|Θ|−1ρ(τ1)ρ(τ2)+

1
|Θ|−1 (1− ρ(τ1)− ρ(τ2)) .

For proof see Appendix A.2.

This is a somewhat uncommon condition to deal with, so we also provide a more standard su�cient

condition for re-encoding to be bene�cial

Corollary 1. Given, simplex like memory, uniform prior, and matching-based utility, if ρ(•) is

(strictly) concave in some positive neighborhood of t = 0, there exists a (strictly) performance im-

proving Bayesian re-encoding scheme.

For proof see Appendix A.3.
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Figure 4: Performance functions with and without re-encoding. Binary: δ = 0.03, n = 13, |Θ| = 2.
Absorbing Star: δ = 0.1, k = 3, |Θ| = 3. Re-encoding at t = 25.

Based on this corollary, it is useful to consider what types of memory systems have concave ρ(t)

near t = 0. Because ρ(t) ∈ [0, 1] and is decreasing, it is generally not everywhere concave. However,

many interesting ρ(t)s do have signi�cant concave regions when t is small. Both the two state binary

encoding and the absorbing star memory systems have a decreasing logistic shape with a concave early

portion. In these cases, as long as it occurs in the concave regions, a re-encoding will be bene�cial.

Figure 4 shows the performance functions for both of the example memory systems with and without

re-encoding.

3.2.1 Recall E�ects

We have established that re-encoding a memory can improve memory performance. If we assume

that explicitly recalling a memory will cause the brain to re-encode that memory, then this bene�t is

consistent with the observed bene�ts of forced recall where explicitly making someone recall a memory

improves later recall.15 The may also explain why the brain seems to �replay� events as part of the

memory formation process.16

Spacing e�ects are phenomena where learning in a spaced out schedule provides better results than

more clustered studying.17 There are a number of spacing e�ects, but we are speci�cally concerned

with the spaced rehearsal e�ect where an instance of learning involves rehearsing information by one's

15Brewer et al. (2010)
16Buhry et al. (2011)
17Leicht and Overton (1987)
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self with no new information provided.18 Spacing out these rehearsals leads to better results than

clustering them.

The way that re-encoding improves memory performance can explain why we observe this e�ect.

If multiple Bayesian re-encodings happen in rapid succession, few errors remain for the second one to

correct, essentially wasting the e�ort of the re-encoding. Regularly spacing re-encodings works better

than clustering them.

When bayesian re-encodings are evenly spaced, we can use the resulting transition kernel to �nd a

closed form solution to the �nal performance.

Proposition 3. Given, simplex like memory, uniform prior, and matching-based utility, when there

are r evenly spaced re-encodings occur, �nal performance at time T is given by

1
|Θ|

(
1 + (|Θ| − 1)

(
ρ(τ̂)− 1−ρ(τ̂)

|Θ|−1

)
r+1

)
Where τ̂ = τ

r+1 .

For proof see Appendix A.4. Note, as |Θ| → ∞ this performance approaches ρ(τ̂)r+1, because cases

where two mistakes lead to a correct answer become e�ectively impossible.

This result will be very helpful in exploring the realism of memory decay rate in the next section.

3.3 Empirical Memory Performance

Having shown that Bayesian re-encoding can explain rehearsal e�ects, we turn our attention to the

empirically observed rate of memory decay. In the experiments of Averell and Heathcote (2011),

subjects memorized words and then attempted to recall them at several later times with no feedback

between recall attempts. This allowed Averell and Heathcote (2011) to trace a retention curve which

they checked against several candidate functions in order to determine its approximately determine its

shape.

We argue that their retention curve is analogous to the performance function in our model. While

Averell and Heathcote (2011) do not reward subjects based on performance, the matching reward

seems like a reasonable approximation of intrinsic reward. Therefore we will compare their results to

the predictions from our model.

18A spacing e�ect has also been observed in studying environments where information is repeated regularly. The
re-encoding model does not have anything to say about those settings.

15



Figure 5: Performance given multiple re-encodings with approximation curves. Binary: δ = 0.03,
n = 13, |Θ| = 2. Absorbing Star: δ = 0.1, k = 3, |Θ| = 3. Re-encoding every 25 periods.

Performance curves in Averell and Heathcote (2011) appear to follow an everywhere convex, ap-

proximately power law decay. This di�ers substantially from what we would expect in a well designed

memory system. As discussed in Section 3.2, if the encoding is well chosen, memories should be ini-

tially encoded in relatively �stable� memory states. The transition to less stable states over time should

lead to a concave region in the performance curve and an increase in the hazard rate. However, data

from Averell and Heathcote (2011) shows that the hazard rate of human memories is either constant

or decreasing over the entire range.

Re-encoding can explain this discrepancy. Unlike the transitions between memory states through

decay, the transitions between encoding states through re-encoding have a constant hazard rate. To

see this we modify the expression from Proposition 3 from having a �xed end point to instead give the

approximate performance function when re-encoding occurs every k periods

ρ(t) ≈ 1
|Θ|

(
1 + (|Θ| − 1)

(
ρ(k)− 1−ρ(k)

|Θ|−1

)
t/k

)
which is a power law decay o�set by a constant 1

|Θ| . Figure 5 shows graphically how frequent

re-encoding will cause the performance function to approximate power law decay.

We have now shown that Bayesian re-encoding explains a range of human memory features pre-

viously thought to be separate. We now move on to a more general theoretical discussion of the

properties of re-encodings.
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4 General Memory Structure

In this section we present a number of results which will help us better understand Bayesian re-encoding

outside of simplex-like memory systems. Ultimately, we will by trying to generalize the performance

function in a broader context. We assume some arbitrary memory system de�ned by D and N and

arbitrary prior over states π. We still assume a matching based utility function.

Before we get to the primary results characterize a number of useful objects. The memory system

induces a sequence of signal structures on the state θ with earlier signal structures Blackwell dominating

those that come later. We represent the signal structures as a distribution St of signals conditional

on states. With no re-encodings, we have St = DtN . We can also represent it as a stochastic matrix

where St[i, j] is the probability of receiving signal indexed i in state j.

Lemma 1. For any sequence of posteriors de�ned by {St : t = 1, 2, ...τ} where St ⪰B St+1 there exists

a memory system M, D which induces it.

For proof see Appendix A.5. Note this Lemma does not depend on matching based utility. The

proof is fairly straightforward given the observation that the memory system can be set up to visit a

di�erent set of memory states in each time period. Given this lemma, the memory system at time t

could, taken in isolation, induce generate any valid signal structure.

This Lemma shows us that our model does not just apply to memory systems, since the memory

component of the model has little bite on its own. Re-encoding can be applied to any environment

where information is passed through a series of noisy channels as long as their are opportunities to make

the re-encodings. As such, our results could also have application in �elds like telecommunications and

technological di�usion.

4.1 The Confusion Matrix

Next we de�ne an important object which is derived from the induced signal structure: the confusion

matrix. The confusion matrix tells us how likely it is to end up in the encoding state for state θi

after re-encoding given that we started in the encoding state for θj . As an object, it is critically

important for calculating the performance function after re-encodings, because it essentially provides

the transition matrix between re-encoding states induced by the re-encoding process.

The confusion matrix Q(t,M, D) is a |Θ| × |Θ| column stochastic matrix where the ijth element

denotes the probability that γ̄(m) = θi given θ = θj where γ̄(m) is the mode of posterior the γ(m).
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We suppress the dependence on M and D since they are generally �xed. Formally

Q(t)[i, j] =
∑

k:θi=γ̄(mk)

S[k, j]

The concept of a confusion matrix makes sense in context of Bayesian re-encoding speci�cally,

because the re-encoding depends on the posterior mode. The no re-encoding performance function is

given by

E(u) = Tr(Q(T )Π)

So we know Q(T ) = ADTN with A chosen optimally based on posterior mode. We can now apply

several existing results to characterize Q(•).

Remark 2. Any |Θ| × |Θ| column stochastic matrix satisfying M satisfying Miiπ(θi) ≥ Mijπ(θj)∀i, j

can be a confusion matrix Q(τ) for some memory system given arbitrary τ .

This remark is an immediate result of the No Improving Action Switches result of Caplin and

Martin (2015) (which holds i�) and Lemma 1. It says that any appropriately sized stochastic matrix

with a type of prior dependent diagonal dominance is a possible confusion matrix.

While the model does not impose further restrictions on Q(t) in isolation, it does impose dynamic

restrictions. For example, by Blackwell (1953) and Lemma 1 we know Tr(QΠ) is decreasing in t. Is

it possible to impose greater restrictions on Q(t) given the Blackwell ordering of the signal structures

induced? At least in the 2× 2 case, the answer is no.

Remark 3. In the two state case any sequence of valid Q(t)s with weakly decreasing Tr(QΠ) is possible

For proof see Appendix A.6. Here valid means satisfying the NIAS condition. This remark comes

from the fact that there exists a signal structure which can produce any valid Q(t) with a given Tr(QΠ)

and this matrix can be garbled to given lower utility versions of itself.

Unfortunately, no such generating signal structure exists in the three state case, and further dy-

namic restrictions on Q(t) in larger environments have so far been di�cult to fully characterize. Note,

in the previously discussed Simplex-Like memory systems the confusion matrix always takes a con-

venient form with a value q on the diagonal and the value 1−q
|Θ|−1 everywhere else. As τ increases, q

weakly decreases. However, even in this simple case we generally have Q(τ) ̸= Q(1)τ . As we showed

before, the rate of decay is generally not consistent.
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4.2 Generalized Performance Function

Having de�ned and characterized the confusion matrix, we now have what we need to start discussing

the performance function in the more general settings. Using the same logic as Proposition 3 we get

the following result

Proposition 4. Given matching-based utility, when there are r evenly spaced re-encodings, and

argmax
j

eTi D
τ

r+1NΠej =

argmax
j

eTi D
τ

r+1NQ
(

τ
r+1

)k

Πej

for all for all i, k ≤ r + 1 then �nal performance at time τ is given by

Tr

(
Q
(

τ
r+1

)r+1

Π

)
Proof. The result is immediate as long as the confusion matrix is constant based on the logic

behind Proposition 3. For the confusion matrix to be constant, it must be that the same memory

states at the same time after must give induce the same posterior mode at each re-encoding step and

at decision time. The condition guarantees this consistency through Bayes rule.

This Proposition gives us a simple formula for the performance function under Bayesian re-encoding

as long as the posterior mode after seeing a given memory state remains the same regardless of how

many Bayesian re-encodings have occurred. Note that this condition hold trivially if the player cannot

remember how many Bayesian re-encodings have happened.19 Mathematically this restriction boils

down to preserving a type of diagonal dominance across multiplications by the confusion matrix.

The condition holds for any simplex-like memory system (as mentioned above) and tends to have

more slack when Q(t) is highly symmetric and memory signals are more informative. This symmetry

does not need to extend as far as that seen in Simplex-Like memory systems. We can take advantage

of a less strenuous form of symmetry. First we provide a symmetry de�nition for the decay matrix

De�nition 4. A K ×K Matrix is a ring-distance monotone if it has the form

[
v vr.1 vr.2 ...

]
where v is a vector of length K which satis�es v[i] = v[K + 2− i]∀i ≥ 2 and v[i] is decreasing in i for

19This does make calculating the confusion matrix more di�cult, as the player will have to hold beliefs over the number
of re-encoding that have happened.

19



all i ≤ K
2 + 1. Here vr.i denotes v rotated i elements so v[1] = vr.1[2], v[2] = vr.1[3], and so on until

v[K] = vr.1[1].

We call this ring-distance monotone, because treating the matrix as a weighted circular graph, it

implies that connections monotonically and consistently decrease in strength the farther two nodes are

away from each other on the circle.

Next we need a symmetry condition for the encoding matrix

De�nition 5. An encoding k|Θ| × |Θ| matrix N is evenly spaced if N [i, j] = 1 if (i − 1) ∗ k + 1 = j

and 0 otherwise.

This evenly spaced encoding matrix is essentially an identity matrix that has been stretched out

with lots of 0s. It is called evenly spaced because it spaces the encoding memory states evenly around

the circle. Now we can write the result.

Corollary 2. Given matching utility and uniform prior, if D is ring-distance monotone, N is evenly

spaced, and π is uniform then if here are r evenly spaced re-encodings performance at time τ is given

by

1
|Θ|Tr

(
Q
(

τ
r+1

)r+1
)

Where Q
(

τ
r+1

)
= AD

τ
r+1N and A[i, j] = 1 if ik − 1.5k + 1 < j < ik − 0.5k + 1, A[i, j] = 0.5 if

j = ik − 0.5k + 1 or j = ik − 1.5k + 1, and 0 otherwise.

For Proof see Appendix A.7. The essence of this proof boils down to showing that ring-distance

monotone matrices are diagonal dominant and closed under multiplication. Note that this also works

for re-indexings of ring-distance monotone matrices, since which node in a network is labeled as i

inherently arbitrary.

This concludes the results related to Bayesian re-encoding. Next we will be considering re-encoding

more generally.

5 Optimal Re-encodings Beyond Bayes

So far we have been considering Bayesian Re-encoding, without considering whether that types of

re-encoding is optimal. We have also been only considering environments where there is only a payo�
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for matching one's action with the state of the world, because Bayesian re-encoding makes sense in

these contexts.

We now consider re-encodings more generally and what we can say about optimal re-encodings.

Ultimately, we will show why Bayesian re-encodings are optimal in the examples we previously con-

sidered. We also generalize from the memory environment by replacing powers of the memory decay

matrix Dτ with arbitrary sequences of garblings D̂i. What we previously called memory states, we

now call signal states. We still consider a setting with �nite states, actions, and signal realizations.

We now allow for arbitrary utility functions.

We need to adapt 1 to deal with general utility functions. The probability of action conditional

on state is given by AD̄ where D̄ is the total channel garbling after passing through all garbling in a

sequence. The joint action, state probabilities are given by

AD̄NΠ

This is essentially the same approach as Leshno and Spector (1992) but transposed to show that by

pre-multiplying stochastic matrices we are applying repeated transformations. Given this, the player's

expected utility is

ρ(τ) = eT
((
AD̄NΠ

)
⊙ U

)
e

Where ⊙ is the Hadamard product and U [i, j] = u(ai, θj). With these preliminaries out of way we

can turn our attention to re-encodings.

5.1 Single Re-encoding

To ad a re-encoding we �rst separate the decay into two phases as

eT
((

AD̂2D̂1NΠ
)
⊙ U

)
e

Where D̄ = D̂2D̂1. If we include re-encoding between the phases this becomes

eT
((

AD̂2RD̂1NΠ
)
⊙ U

)
e

Where R[i, j] is the probability of re-encoding the signal state indexed i after seeing the memory
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state indexed j. De�ne R as the space of |M| × |M| stochastic matrices.

In this context, the bene�t re-encoding seems counterintuitive. Re-encoding is, essentially, another

garbling. We know

G1 ⪰B G2G1

where G1 and G2 are arbitrary stochastic matrices, so it is intuitive that adding more garblings and

mappings should make things worse. However, this only applies to post-multiplying or pre-multiplying.

It does not apply when inserting a new mapping in the middle. In general,

G2G1 ̸⪰B G2RG1

Where R is a re-encoding mapping. In some cases G2RG1 can Blackwell dominate G2G1. This

shows how re-encoding can be bene�cial.

The optimal re-encoding problem can then be written as

R∗ = argmax
R∈R

eT
((

AD̂2RD̂1NΠ
)
⊙ U

)
e

Then optimal R∗can be found using the following proposition

Proposition 5. If A and N are �xed, it is necessary and su�cient for R to be optimal that if R[i, j]

is positive then

j = argmax
k

M [k, i]

Where M = D̂1NΠUTAD̂2

For Proof see Appendix A.8. If the matrix M can be calculated, �nding the optimal re-encoding is

as simple �nding the column maximum. Note that Similar logic can be used to �nd optimal N with

A and R �xed or optimal A with N and A �xed.

This result is strong but somewhat narrow. Next we will see how the same logic can be extended

to environments where A and N aren't �xed or where there are multiple re-encodings
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5.2 General Re-encoding Plan

Note that while the su�ciency no longer applies, a similar condition is necessary. In this case the

optimal re-encoding problem becomes

arg max
A,N,R1,R2,...

eT
((

AD̂τ−1Rτ−2...R2D̂2R1D̂1NΠ
)
⊙ U

)
e

Where the D̂is are all some sequence of garblings. We now extend Proposition 5, although we lose

su�ciency in doing so.

Corollary 3. It is necessary for the re-encoding plan to be optimal that if Rt[i, j] is positive then

j = argmax
k

Mt[k, i]

For all t. Where Mt = D̂tD̂t−1...D̂2R1D̂1NΠUTAD̂τ−1Rτ−2...Rt+1D̂t+1.

Proof is omitted as it is essentially identical to the su�ciency in the proof of Proposition A.8 with

extra garblings and re-encodings. Note A and N essentially behave as, RT−1 and R0 respectively.

This result can be helpful in �nding local optima but it does not give us a way to search for the

globally optimal set of re-encodings easily.

However, there are a few results which can make searching for optimal re-encodings easier in many

contexts. First we have the following remark:

Remark 4. A deterministic optimal re-encoding exists

For proof see Appendix A.9. This means that the search space will be �nite, if still potentially

large.

We can narrow the search space of re-encoding plans further by discarding some immediately

suboptimal re-encodings. First we need another de�nition.

De�nition 6. We say a consecutive sequence of re-encodings {Rt, Rt+1, Rt+2, ..., Rt+n} is e�ectively

Blackwell dominated if ∃{R′

t, R
′

t+1, R
′

t+2, ..., R
′

t+n} such that M = GM ′ or MD̂t = GM ′D̂t for some

stochastic matrixG, whereM = D̂t+n+1Rt+n...D̂t+2Rt+1D̂t+1Rt andM ′ = D̂t+n+1R
′

t+n...D̂t+2R
′

t+1D̂t+1R
′

t.

Now we can categorize some re-encodings that will never be used:

Proposition 6. An e�ectively Blackwell dominated re-encoding sequence (potentially including initial

encoding) will always be weakly suboptimal
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For proof see Appendix A.10. This is an intuitive result, because it never makes sense to strictly

give up information one could have kept through a di�erent choice of re-encodings. For example, it

never makes sense to re-encode all current signal states onto the same signal state, as doing so destroys

all the available information.

Note that this Proposition can be leverage show the optimality of the employed encodings and

Bayesian re-encoding in the twostate binary and absorbing star memory systems discussed previously.

6 Potential for Applications

In this paper we proposed a new mathematical framework for re-encoding as a valuable technique when

dealing with information repeatedly passing through noisy channels. This is particularly applicable

when dealing with memory systems. We showed that re-encoding can improve memory performance

and explain a number of quirks in human memory.

We now consider a few current and potential future applications of re-encoding. To our knowledge,

nothing like Bayesian re-encoding is used in telecommunication, and the need for encryption would

make it somewhat impractical. For Bayesian re-encoding to work, intermediaries need access to the

information in the message. Most error correction is instead done by simply re-sending lost or damaged

packets. Bayesian re-encoding could be valuable in situations where encryption is not required.

Usage in memory systems is generally rarer. As mentioned, a limited form of re-encoding called

Error Correction Code (ECC) memory �xes small, usually single bit errors, but it is not in common

use, and it is not on the scale of whole �les or whole memories.20 There are a number of reasons for

this.

First, computer memory mediums are extremely robust with most devices not experiencing a single

DRAM bit �ip error in a given year unless they are exposed to unusual amounts of radiation.21 This

means that individual bits are robust relative to the durability of the medium they exist on. A hard-

drive is likely to fail from use before a speci�c bit gets an error. With brains the line between the data

content and the data medium is blurrier, but the brain's operational lifetime is much greater than the

persistence time of an individual synaptic connection.

Also, processing power is at a relatively greater premium than storage space on modern computers,

so making backups makes more sense than regular re-encoding. However, both of these trade-o�s are

20Chen and Hsiao (1984)
21Schroeder et al. (2009)
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speci�c to the technologies of today. If later computers more closely resemble neural and biological

systems, re-encoding may play a critical roll in those systems as well. Already, devices like Intel's Loihi

Neuromorphic Processor are moving in this direction.

Biological systems use a complex and broad array of processes to manage errors in DNA, but two

of the mechanisms involved can be thought of as roughly analogous to ECC and active Bayesian re-

encoding respectively. DNA information is stored redundantly as in ECC memory with each strand

containing identical information. When on strand is damaged, it can often be repaired based on

the other strand through nucleotide excision repair.22 This is similar to how ECC uses redundant

coding to repair errors. However, in the case of more serious double strand errors, the cell may use

homologous recombination to replace the damaged gene with the equivalent gene from the matching

chromosome.23 This process could be considered more similar to Bayesian re-encoding, since the cell

is essentially replacing the original gene with a �best guess� of the original contents.

To our knowledge re-encoding has not yet been applied in any social science context.
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A Proofs

A.1 Proof of Proposition 1

The fact that the conditional memory state probabilities depend only on the previous encoding is

immediate from the decay process, so we must only need to show that the mapping from memory

state to actions does not depend on the number of re-encoding steps when the memory system is

simplex-like.

Since information will always weakly improve performance of the agent, ρ(θ, T ) must be greater

than the probability of choosing a = θ when guessing with no memory signal. Recall, in the no

re-encoding case

a(m, t) = argmax
θ

γ(θ|m, t)

Note that due to the uniform prior, this becomes θi(mj ,t) where

i(mj , t) = argmax
i

DtNei[j]

After some number of re-encodings, n, the action function aR(m, t, n) becomes θi(mj ,t,n) where
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i(mj , t, n) = argmax
i

∑
k

p
(
θ̂n = θi|θ̂0 = θi

)
DtNei[j]

Where θ̂n is the state encoded be re-encoding n and θ̂0 is the initial encoding state. Note that

DtNei[j] takes on the same values across the sum, regardless of θ̂0. By the simplex-like property of

the memory system, we know that p
(
θ̂n = θi|θ̂0 = θi

)
only takes two values which we will call a, b.

p
(
θ̂n = θ|θ̂0 = θ

)
= a

p
(
θ̂n = θ′|θ̂0 = θ

)
= b∀θ′ ̸= θ

Note that a ≥ b by the fact that an informed agent will always perform weakly better than chance.

Therefore, the optimal i(mj , t, n) is therefore the one that matches the high value of p
(
θ̂n = θi|θ̂0 = θi

)
to the highest value in DtNei[j] which is i(mj , t, n) = i(mj , n). Therefore, aR(m, t, n) = a(m, t)

A.2 Proof of Proposition 2

Note that, as shown in the Proof of Proposition 1, the mapping from memory state to actions does

not depend on the number of re-encoding steps when the memory system is simplex-like.

We cover the �if� and �only if� parts separately.

If: Consider a decision setting τ = τ1 + τ2. Performance with no re-encodings would be ρ(τ1 + τ2).

If we introduce one re-encoding at τ1, performance becomes ρ(τ1)ρ(τ2)+ (1− ρ(τ1))(1− ρ(τ2))
1

|Θ|−1 =

|Θ|
|Θ|−1ρ(τ1)ρ(τ2) +

1
|Θ|−1 (1− ρ(τ1)− ρ(τ2)).

Only if: say there is an optimal re-encoding scheme that involves at least one re-encoding. The

�rst re-encoding is at t1 and the second re-encoding or τ is at t2. From Proposition 1, we know that

performance at τ is weakly increasing in performance at t2. De�ne τ1 = t1 and τ2 = t2 − t1. The

performance at t2 under the optimal re-encoding scheme is |Θ|
|Θ|−1ρ(τ1)ρ(τ2)+

1
|Θ|−1 (1− ρ(τ1)− ρ(τ2)).

If ρ(τ1+τ2) >
|Θ|

|Θ|−1ρ(τ1)ρ(τ2)+
1

|Θ|−1 (1− ρ(τ1)− ρ(τ2)) it would improve performance at t2 to remove

the re-encoding at t1. This contradicts optimality of the re-encoding scheme.

A.3 Proof of Corollary 1

Note if ρ is concave then
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ρ(τ1 + τ2)− ρ(τ0) ≤ ρ(τ1)− ρ(τ0) + ρ(τ2)− ρ(τ0) for τ0 ≤ τ1, τ2

Say τ0 = 0 and recall ρ(0) = 1, so p(τ1 + τ2) ≤ ρ(τ1) + ρ(τ2)− 1

So it su�ces to show

ρ(τ1) + ρ(τ2)− 1 ≤ |Θ|
|Θ|−1ρ(τ1)ρ(τ2) +

1
|Θ|−1 (1− ρ(τ1)− ρ(τ2))

which can be rewritten

ρ(τ2)(1− ρ(τ1)) ≤ 1− ρ(τ1)

We know 1−ρ(τ1) ≥ 0 and ρ(τ2) ≥ 0, so this holds. If ρ(•) is strictly decreasing at 0 1−ρ(τ1) > 0,

so it holds strictly. A strictly concave decreasing function is strictly decreasing.

A.4 Proof of Proposition 3

Note that for exact even spacing to be possible, τ̂ = τ
r+1 must be an integer. De�ne q = ρ (τ̂).

Therefore, the transition matrix between re-encodings is then

G =



q 1−q
|Θ|−1

1−q
|Θ|−1 ...

1−q
|Θ|−1 q 1−q

|Θ|−1 ...

1−q
|Θ|−1

1−q
|Θ|−1 q ...

... ... ... ...


So the probability of a correct response at time τ is 1

|Θ| tr(G
τ̂ ) as long as τ̂ is an integer. We can

�nd Gτ̂ by diagonalizing G and iterating that way. To do that we need the following lemma.

Lemma 2. G has two eigenvalues, q − 1−q
|Θ|−1 which is repeated |Θ| − 1 times and 1 which is only

repeated once.

The corresponding eigenvectors form a basis

B =



1 1 1 1 ... 1

−1 0 0 0 ... 1

0 −1 0 0 ... 1

0 0 −1 0 ... 1

0 0 0 −1 ... 1

... ... ... ... ... 1


Proof of Lemma 1. We can verify the �rst |Θ| − 1 eigenvalue, eigenvector pairs by checking
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(
G−

(
q − 1−q

|Θ|−1

)
I
)
vi = 0∀i ∈ {2, 3, ..., |Θ|}

where viis a vector with one in the �rst position, negative one in position i and zero in all other

positions

(
G−

(
q − 1−q

|Θ|−1

)
I
)
=



1−q
|Θ|−1

1−q
|Θ|−1

1−q
|Θ|−1 ...

1−q
|Θ|−1

1−q
|Θ|−1

1−q
|Θ|−1 ...

1−q
|Θ|−1

1−q
|Θ|−1

1−q
|Θ|−1 ...

... ... ... ...


We can see immediately that multiplying this by and of the vis will yield 0. Next we must check

the pair 1, ṽwhere ṽis a length |Θ| vector of all ones. This means we must check

(G− I) ṽ = 0

First note

(G− I) =



q − 1 1−q
|Θ|−1

1−q
|Θ|−1 ...

1−q
|Θ|−1 q − 1 1−q

|Θ|−1 ...

1−q
|Θ|−1

1−q
|Θ|−1 q − 1 ...

... ... ... ...


Therefore (G− I) ṽ is a vector with every element equal to q − 1 + (|Θ| − 1)

(
1−q
|Θ|−1

)
= 0. This

concludes the proof of Lemma 1.

We now continue discussing the diagonalization of G. B can be inverted as

B−1 =



1
|Θ|

1
|Θ| − 1 1

|Θ|
1
|Θ| ...

1
|Θ|

1
|Θ|

1
|Θ| − 1 1

|Θ| ...

1
|Θ|

1
|Θ|

1
|Θ|

1
|Θ| − 1 ...

1
|Θ|

1
|Θ|

1
|Θ|

1
|Θ| ...

... ... ... ... ...


So Gµt = BΛµtB−1 where Λ = diag(q − 1−q

n−1 , q −
1−q
n−1 , q −

1−q
n−1 , ..., 1)

Multiplying this out gives a matrix Gµt with diagonal elements
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1
|Θ|

(
1 + (|Θ| − 1)

(
q − 1−q

|Θ|−1

)
µt
)

and o� diagonal elements

1
|Θ|

(
1−

(
q − 1−q

|Θ|−1

)
µt
)

So a player's accuracy is then 1
|Θ|

(
1 + (|Θ| − 1)

(
q − 1−q

|Θ|−1
T/r

))
.

A.5 Proof of Lemma 1

The proof has two parts. First, we must show that S1 is an arbitrary signal structure, then we must

show St+1 is an arbitrary garbling of St.

The �rst part is straightforward since D can provide an arbitrary mapping from the initial encoding

states to other memory states.

The second part comes from the fact that one can construct memory systems such that they will

visit disjoint sets of memory states each period (as with the absorbing star). One can then simply

induce an arbitrary garbling between memory states visitable in period t and those visitable in period

t+ 1.

A.6 Proof of Remark 3

Take an environment with Θ = {θ1, θ2} and a prior of π for state θ1. WLOG assume π ≥ 0.5. De�ne

the expected utility from the confusion matrix Q11π + Q22(1 − π) = u. First we show that there

exists a signal structure which can produce any valid confusion matrix. Then, we show that the signal

structure can be garbled to the equivalent generator matrix for any lower u. Note we must have u ≥ π

since memory provides an informative signal.

Part 1: De�ne an arbitrary legitimate confusion matrix with �xed u by

Q =

 Q11 1− u−Q11π
1−π

1−Q11
u−Q11π

1−π


Consider the signal structure
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S(u) =


u−(1−π)

π 0

1−u
π

1−u
1−π

0 u−π
1−π


This signal structure can produce any valid confusion matrix. Upon receiving signal 1, the player

picks action θ1. On receiving signal 3 they pick action θ2. After receiving signal 2 the player picks

θ1 with probability λ and θ2 with probability 1 − λ. We can produce any valid confusion matrix by

setting

λ(Q11) =
Q11π+(1−π)−u

(1−u)

Part 2: The second part of the result is immediate from the fact that

S(u′) =


u′−(1−π)
u−(1−π) 0 0

u−u′

u−(1−π) 1 u−u′

u−π

0 0 u′−π
u−π

S(u)

For all valid u′ < u

A.7 Proof of Proposition 2

We begin with a lemma

Lemma 3. If matrices X and Y are both K × K ring-distance monotone then XY is ring-distance

monotone.

Proof. Say X =



x

xr.1

...

xr.K−1


and Y =

[
y yr.1 ... yr.K−1

]



x

xr.1

...

xr.K−1


[

y yr.1 ... yr.K−1

]
=



O0 O−1 O−2 ... O−K+1

O1 O0 O1 ... O−K+2

O2 O1 O0 ... ...

... ... ... ... O−1

OK−1 OK−2 ... O1 O0


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Where Oi = x · br.i. Note under the wraparound structure ring-distance monotone imposes on X

and Y Oi = OK−i and therefore Oi = O−i so this becomes

AB =



O0 O1 O2 ... O1

O1 O0 O1 ... O2

O2 O1 O0 ... ...

... ... ... ... O1

O1 O2 ... O1 O0


Thus, if Oi is decreasing in i we have the result.

De�ne Cz(v) = (v[1], v[|v|], v[2], v[|v| − 1], ..., ) as the cyclic zipper of v. This reordering is created

by turning the vector v into a circle and then �zippering� the two sides together.

We say a vector v of length K is a periodic ring-vector if it satis�es v[i] = v[K + 2− i]∀i ≥ 2 and

v[i] is decreasing in i for all i ≤ K
2 + 1. v = (v1, v2, v3, ...v3, v2) where vi+1 ≤ vi

Note that if v is a periodic ring-vector then Cz(v) is weakly decreasing. We also have the following

property

Lemma 4. If v is a periodic ring-vector of length K then Cz(rotn(v)) majorizes Cz(rotn+1(v))∀n ≤

K/2

To see this note that during such a rotation some elements of Cz(rotn(v)) move up in position along

a speci�c path while others move down in along a di�erent path. De�ne cn = Cz(rotn(v)).

During rotation, from cn to cn+1, The elements cn[2], cn[4], cn[6], ... move up in position while the

elements cn[1], cn[3], cn[5], ... move down. The second sequence elementwise dominates the �rst. This

can be best seen from the accompanying diagram. Hence cn majorizes cn+1.

We conclude the proof of Lemma 3 by noting that since Cz(•) is a reordering then a·b = Cz(a)·Cz(b).

Since Cz(a) is weakly decreasing and Cz(br.n) majorizes Cz(br.n+1) then a · br.n ≥ a · br.n+1. Thus Oi is

decreasing in i concluding the proof.

Next we need a result on the optimality of A with no re-encodings.

Lemma 5. A is the optimal action matrix given a distance-ring decay matrix Y and an evenly spaced

encoding matrix N .

Proof. Note, for N to be evenly spaced it must be that Y is a k|Θ| × k|Θ| matrix where k is some

integer. Given π uniform, this is the same as showing
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arg min
j∈{1,...|Θ|}

|i− (j − 1)k − 1| = arg max
j∈{1,...|Θ|}

(Y N) [i, j]∀i

The greatest element of row i in Y N corresponding to an encoding determines the posterior mode

after memory state mi. Using the evenly spaced encoding matrix, the encodings have coordinates

(j − 1)k + 1 where j in an integer. This statement is saying that the most likely initial encoding in a

row corresponds to the closest encoding coordinate to the rows index. Note this is precisely how A is

constructed. Ties are split evenly.

To see this note (Y N) [i, j] = yr.i−1 · e(j−1)k+1. Given that y is a periodic ring vector, this gives

the result.

Note D
τ

r+1 is a distance-ring matrix by Lemma 3, so this will show that A is optimal for the �rst

re-encoding. The last result we need shows another operation which preserves the distance ring nature

of a matrix

Lemma 6. If Y is a distance-ring matrix, then AY N is a distance ring matrix where N is an evenly

spaced encoding matrix.

Proof. Again note, for N to be evenly spaced it must be that Y is a k|Θ| × k|Θ| matrix where k

is some integer.

Next see

(Y N) =

[
y yr.1+k yr.+2k ...

]
and

A =



a

ar.1+k

ar.1+2k

...


Where a is a periodic ring vector. Therefore
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AY N =



O0 Ok O2k ... Ok

Ok O0 Ok ... O2k

O2k Ok O0 ... ...

... ... ... ... Ok

Ok O2k ... Ok O0


Which has the distance-ring structure.

Now by Lemma 5 we know that Q
(

τ
r+1

)
= AD

τ
r+1N and by Lemma 6 we know Q is a distance

ring matrix. By Lemma 3 this means Dm and Qn are both distance ring matrices ∀ m and n. To

make this work we implicitly assume D is an a k|Θ| × k|Θ| matrix where k is some integer.

So the last thing we need to prove is that

arg min
j∈{1,...|Θ|}

|i− (j − 1)k − 1| = arg max
j∈{1,...|Θ|}

(DmNQn) [i, j]∀i,m, n

Say

Dm =

[
dm dmr.1+k dmr.+2k ...

]
=



v1

v2

v3

...


Where vi is every kth element of dmr.i−1 starting at 1. Therefore, (D

mNQn) [i, j] = viqr.j−1. By the

same logic as the proof of Lemma 4, this is maximized along a row when |i− (j−1)k−1| is minimized.

A.8 Proof of Proposition 5

Due to a standard property of the Hadamard product

eT
((

AD̂2RD̂1NΠ
)
⊙ U

)
e = tr

(
AD̂2RD̂1NΠUT

)
By the cyclic property

tr
(
D̂1NΠUTAD̂2R

)
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De�ne

M = D̂1NΠUTAD̂2 =

[
m1 m2 m3 ...

]
Where mi is the ith column of M . Further de�ne

R =



r1

r2

r3

...


Where ri is the ith row of R. The player's expected utility then becomes

∑
i

mi · ri

Where the dot represents the typical dot product. combined with the fact that R is right stochastic,

this give the result.

A.9 Proof of Remark 4

An optimum exists since the objective is continuous and the space is compact. If one memory state i has

a non-zero, non-one probability of being encoded as a memory state j in the optimal re-encoding then

re-encoding memory state i as memory state j is weakly optimal. In this case setting the probability

to one will not lower payo�s.

A.10 Proof of Proposition 6

Expected utility is given by

max
Rt+n+1

Tr
(
R

′

t+n+1D̂t+n+1...Rt+1D̂t+1Rt...R2D̂2R1D̂1NΠUTAD̂τ−1Rτ−2...
)

For some optimal A,N and other Rs. De�ne this as

max
Rt+1

Tr (Rt+1S1S2M)

Where S1 = M or S1 = MD̂t (depending on which condition holds), is a stochastic matrix,

36



S2 = ...R2D̂2R1D̂1N is a stochastic matrix, and Ã = ΠUTAD̂τ−1Rτ−2... is an arbitrary conforming

matrix.

Following Leshno and Spector (1992)'s part (a) of the proof of the Blackwell theorem (transposed

in this case) we have

max
Rt+1

Tr
(
Rt+1S1S2Ã

)
= max

Rt+1

Tr
(
Rt+1GS

′

1S2Ã
)
≤ max

Rt+1

Tr
(
Rt+1S

′

1S2Ã
)

Where S1 = M ′ or S1 = M ′D̂t (again depending on which condition holds).

B Extra Examples

B.1 Simplex Like

Say there is an absorbing memory state A12 which can only be reached from encoding state m̃θ1 with

probability 0.1 or from m̃θ2 with a probability 0.2. Further say that the memory system will not

return to encoding states once it has left them to avoid repeating paths. If the memory system is

Simplex-Like there must also an absorbing memory state Aij for every other pair of encoding states

which is reachable from mθi with probability 0.1 or from mθj with a probability 0.2. This includes

i = 2 and j = 1. The ξ in this only contains single element or no element sequences, so it is easy to

write out as [[0.1], [0.2], [∅], [∅], ...].
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