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Abstract

Public goods provision continues to be a major problem of interest for economics.

Many current methods require government level intervention. In cases where govern-

ments are unable or unwilling to intervene, lower power mechanisms are required. Cur-

rent best practice in this case is the provision point mechanism, typically used by Kick-

starter, but this mechanism does not eliminate the potential for the free rider problem.

We propose a novel Minimum-O�er Contribution Mechanism where each player makes

an o�er and then each contribution is equal to the lowest o�er made. This mechanism

eliminates the free rider problem and implements the Lindahl (1958) equilibrium in

weakly dominant strategies.

1 Intro

A great deal of work in economics has been devoted to �nding ways to e�ciently provide

public goods (and avoid public bads) in the presence of the free rider problem, but the

problem persists in a number of major arenas. For example, international cooperation on

environmental issues has not been as fruitful as is generally desired and current public goods
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mechanisms have not �xed the issue. In this paper we propose a novel mechanism which

could be bene�cial in some of these unresolved environments.

A large portion of the literature has been devoted to �nding mechanisms which allow

a center to provide an e�cient amount of the public good in the presence of imperfect

information.1 However, the mechanisms involved require the ability to create and destroy

money and/or the ability to enforce participation. This makes the mechanisms impractical

for any environment where there is not a government or equivalent central authority to

implement them. We refer to these mechanisms as low-information/high-power mechanisms,

because they do not require information to work but do require a center with speci�c powers.

This paper looks at a di�erent problem, how can we promote the provision of public goods

when no powerful authority exists but information is present? International cooperation

provides a relevant application here. The impacts of international public goods are often

roughly proportional to the scale of di�erent industries and economic activities within a

country. For example, a percentage reduction in �shing caps would impose a cost that is

roughly proportional to the size of a country's �shing industry. Therefore at least rough

information is available, but overarching authority is absent.

In this paper, we propose a Minimum-O�er Contribution Mechanism (MOCM) where

players make o�ers simultaneously and then pay out proportional to the lowest adjusted o�er

among all participants. This approach eliminates the free rider problem in a manner that

has several appealing properties. The mechanism is budget balanced, individual rational and

implements the strongly e�cient outcome in weakly dominant strategies. No government type

authority is needed to enforce participation or create money. Although some mechanism or

entity will be needed to assign prices, they do not need any further power and any su�ciently

disinterested party should be su�cient. Of course, something must be sacri�ced for not

needing a powerful implementer, so our mechanism has higher information requirements. We

call such mechanisms high-information/low-power mechanisms, although we will show our

mechanism can still be bene�cial in low information environments with some adjustments.

The appealing properties of the MOCM come from three technical features of the mech-

anism. First, o�ers are adjusted based on Lindahl prices which allows for fair e�cient out-

comes.2 Lindahl prices are hypothetical prices for public goods under which every individual

1Clarke (1971); Groves and Loeb (1975); Myerson and Satterthwait (1983); La�ont (1987); Falkinger et al.
(2000); Grüner and Koiryama (2012)

2Lindahl (1958)
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pays a price for the good that is equal to their marginal bene�t and where every player

demands the same amount of the public good. The use of Lindahl prices helps match indi-

vidual marginal incentives with planner incentives to implement e�cient outcomes. Second,

the pinning of contributions to a single pivotal player allows us to match these marginal

incentives while maintaining a balanced budget. This also means the mechanism generates

de�ned o�-path outcomes, which do not exist in the standard Lindahl framework. Third,

using the minimum o�er as our pivot ensures the mechanism is individually rational for all

players and makes sure no one pays more than their o�er. Note that the minimum o�er ele-

ment essentially provides agents with veto power, which is instrumental for ensuring that the

mechanism provides Pareto improvements. This point was �rst argued by Wicksell (1958)

and more recently discussed by Van Essen and Walker (2017). Because the MOCM imple-

ments the Lindahl (1958) equilibrium, the outcome will be fair in the sense that players pay

in proportion to their marginal bene�t from the public good at equilibrium. Lindahl (1958)

equilibrium is generally considered a very fair equilibrium.3

Traditionally, the Wilson (1987) critique has been leveled at high-information mechanisms

due to their reliance on a mechanism maker with knowledge of preferences. If preferences

are known, why do the agents not simply contract on an e�cient outcome? Unfortunately,

in the real world the act of negotiating a contract is often characterized by barriers and fric-

tions.4 While low-information/high-power mechanisms like the VCG mechanism5 have ex-

cellent theoretical properties, it is more often low power higher information mechanisms that

see widespread use. For example, consider the provision point mechanism (PPM) proposed

by Bagnoli and Lipman (1989). Their mechanism involves setting a contribution threshold

equal to the e�cient amount. If o�ers meet the threshold, the good is provided. Otherwise, it

is not. The PPM mechanism is used frequently by charities6 and on crowdfunding platforms

like Kickstarter. Also, non-pro�ts like National Public Radio or the Sierra Club regularly

use matching donation mechanisms which are also in this category. As we show in Section

3, the matching contributions mechanism is a variant special case of our mechanism.

The PPM is the current predominant low-power high-information mechanism, so we will

use it as a point of reference. The MOCM has several advantages over the PPM. First

3Sato (1987); Buchholz and Peters (2007)
4There is a large literature on the topic of frictional and incomplete contracts. A small sample of the

related papers includes Antràs (2003); Antràs (2005); Acemoglu et al. (2007).
5Clarke (1971); Groves and Loeb (1975)
6Bagnoli and McKee (1991)
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and foremost, in the MOCM the e�cient outcome is implemented as the result of each

player choosing their unique weakly dominant strategy. This is potentially an important

contribution, since threshold-based mechanisms can lead to coordination problems where

players do not contribute in the hopes of getting their more preferred equilibria (ones where

they do not pay as much). Coordination issues are of primary concern in most unresolved

high-information environments.

Both the PPM and the MOCM require information to perform optimally, but the in-

formation each requires is essentially orthogonal. Setting the correct provision point in the

PPM requires knowing the e�cient provision level but not how much each player bene�ts

from the public good. On the other hand, setting the correct prices in the MOCM requires

knowing what portion of the marginal public good bene�ts each player receives, but not what

the e�cient provision level is. Therefore, in settings where only one type of information is

available, the best choice of mechanism will be straightforward.

While it is designed for high-information environments, the MOCM is somewhat ro-

bust to imperfect information and price manipulation. In Section 3.0.1 we discuss how well

the MOCM performs in di�erent imperfect price conditions. The MOCM outperforms the

Voluntary Contribution Mechanism (VCM) in the presence of manipulation as long as the

manipulator does not have a majority stake in the public good, and even then the MOCM

may perform better in many cases. In cases where the participants have more information

about each other's preferences than the price setter does, Appendices C and D, discuss how

players can be induced to give up their information.

The biggest weakness of the MOCM is imperfect information and heterogeneous bene�ts

combined with large groups. When there are enough potential contributors with enough

heterogeneity, inevitably a player with near zero bene�t from the public good will be assigned

a high price leading to total contributions approaching zero. However, the MOCM can be

modi�ed to be helpful in such cases. Section 4.1 provides a version of the mechanism to be

used by charitable organizations where the set of potential donors is large and not well known

at the individual level. This N-Group MOCM can be thought of as a generalization of the

common matching donation mechanism, which would be considered a 2-Group MOCM. The

N-Group MOCM has the potential to generate more contributions than the 2-Group MOCM

in many scenarios.

We contend that the MOCM is a potentially valuable addition to the public goods toolbox

which can be particularly valuable for approaching scenarios with few agents, severe coordi-
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nation problems, and no overarching authority. International cooperation on environmental

issues seems to exhibit these features, so it presents a situation where our mechanism could

be particularly useful. It is di�cult for countries to hide information about their preferences

since the size of major polluting industries is relatively easy to approximate with publicly

available information. The N-Group version of the MOCM may also be useful in general

fundraising activities.

1.1 Literature

The literature on public goods provision is too large to discuss here with any level of

completeness, so we will only brie�y mention what we consider to be the two most relevant

papers.

One of the closest things in the literature to the MOCM was proposed as a charity auction

mechanism by Goeree et al. (2005). They examined games where an item was auctioned o�

to raise money for a linear public good. Goeree et al. (2005) found that the minimum price

all pay auction was the revenue maximizing auction. Our papers describe sets of models with

a small overlap. If the bene�t of the public good is linear and the impact is homogeneous in

the MOCM, the resulting model is identical to a Goeree et al. (2005) minimum price auction

where the value of the auctioned good is zero.

Empirically, a mechanism like the one proposed by Goeree et al. (2005) did not perform

well when tested.7 It failed to reach theoretical contribution levels and failed to beat other

public good funding mechanisms. We hypothesize that the auction framing may have ef-

fectively reintroduced the free rider problem psychologically even while the minimum price

component eliminated the free rider problem mathematically. Individuals are often reluctant

to contribute to public goods, since they do not want to subsidize free riders. Similarly,

individuals are likely to be reluctant to bid in all pay auctions, because they do not want to

subsidize the single auction winner. In both cases, participants do not want to risk footing

the bill for someone else's unfair/unearned bene�t.

The other most similar element of the literature is the matching mechanism explored

by Guttman (1986) where one player o�ers to match some fraction of the contributions of

another player. The MOCM can be thought of as similar to a special case of matching

contributions with an optimal matching fraction based on Lindahl prizes. There is still a

di�erence however, in that the MOCM allows players to only match contributions up to a

7Corazzini et al. (2010)
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certain amount. This upper limit prevents losses when other players over-contribute and

allows for dominant strategy implementation of the e�cient public goods provision level.

2 Basic Setup

We begin by using a speci�c functional form that makes the exposition clean and simple.

We will generalize our main result later.

First we construct a basic public goods game. There are players i ∈ I = {1, ..., I}. All

players make o�ers x = (x1, ...., xi, ..., xI) simultaneously where xi ∈ R+. Based on the o�ers

made, a set of contributions, y = (y1, ...., yi, ..., yI), is generated by some mechanism. The

mapping from o�ers to contributions depends on the mechanism involved.

Individuals get utility from the total public good provided and private consumption in

the form

ui(Y, yi) = δig(Y )− yi (1)

Where Y =
∑I

i=1 yi. Here g(•) is a weakly concave, di�erentiable, increasing function that
represents the total bene�t from the public good and δi is the share received by individual i.

Assume that
∑I

i=1 δi = 1 without loss of generality. We assume that g(•) satis�es the Inada-
like conditions that d

dY
g(0) > 1

δi
∀i and limY→∞

d
dY

ui(Y, xi) < I so public goods provision is

always positive and �nite in equilibrium.

Throughout the proofs and propositions in this paper, multiple equilibria are possible

due to weak concavity, but if one assumes strict concavity of preferences this is no longer

needed. Note we allow players to contribute more than their endowment. Any bounds on

contributions are handled by assigning arbitrarily low utility values when contributions are

too high.

In terms of solutions, we will be focusing primarily on equilibrium in weakly dominant

strategies but we will also consider pure strategy Nash equilibria when weakly dominant

strategies are not available.

2.1 E�ciency

E�ciency is the ultimate goal of public goods mechanisms. In this setup, a Pareto E�cient

allocation is a set of contributions y∗i summing to Y ∗ for which there is no other allocation

which provides all players at least as high of payo�s and at least one player higher payo�s.

Samuelson (1954) showed that an allocation in a public goods economy is Pareto E�cient,
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if and only if

I∑
i=1

MRSi(Y
∗, y∗i ) = 1

Where MRSi denotes player i's marginal rate of substitution. Given our setup this

condition simpli�es to

g′(Y ∗) = 1

Because we are using quasi-linear utility, the set of Pareto e�cient allocations is equal to

the set of strongly e�cient allocations, ie those which maximize the total sum of utility.

2.2 The VCM

As a point of reference, we �rst discuss the public goods contribution problem in its basic

form. When the amount players o�er is equal to the amount they contribute to the public

good, that is the VCM. Under the VCM, each player is picking

yi = argmax
yi

δig(Y )− yi

With a total equilibrium contribution level Y =
∑I

j=1 yi. Call an equilibrium total

contribution level in the VCM Y ∗
V . In our setup, this solution satis�es the condition

g′(Y ∗
V ) =

1
maxi δi

Which means the Samuelson condition is generally not satis�ed in this case and public

goods are under-provided. In this environment, only players who are tied for maximum δi

will contribute.

2.3 The MOCM

We now present the MOCM formally. In the MOCM, each player makes an o�er xi of

how much they are willing to contribute to the public good. Each player is also given a

weight wi. The actual contributions for each player are given by

yi = wi ∗min
j

(
xj

wj

)
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Where pi is the price for player i and
∑I

i=1 pi = 1. Total contributions are given by

Y =

(
I∑

i=1

wi

)
min
j

(
xj

wj

)
= min

j

xj

wj

Under this mechanism, players pay out a weighted amount based on the lowest adjusted

o�er. In the case where pi is identical across individuals, this corresponds with each player

contributing the minimum o�ered amount.

In the MOCM mechanism each player i picks xi to solve

x∗
i = argmax

xi

δigi

(
min

(
xi

wi
, xk

wk

))
−min

(
xi, wi

xk

wk

)
where

k = argmin
j ̸=i

xj

wj

2.4 Lindahl Equilibrium

Next we introduce a concept which is important for understanding the result of the

MOCM: Lindahl Equilibrium. A Lindahl equilibrium is a strongly e�cient outcome that is

is generally considered �fair� and is a gold standard for public goods outcomes. However,

Lindahl Equilibrium is not implementable in a game theoretic sense as it is originally frame.

In public goods games, a Lindahl equilibrium is a set of prices, p∗, and a level of total

contributions, Y ∗
L , such that each player demands that level of contribution given the price

they pay and the budget is balanced.

In our setup a Lindahl Equilibrium is a set of contributions Y ∗
i and a set of prices p∗i such

that

Y ∗
L ∈ argmax

Yi

δig(Yi)− p∗iYi∀i

yi = p∗iYi

Since there is no rule de�ning what happens outside of equilibrium when di�erent players

demand di�erent quantities of the public good. This is one of the major issues the MOCM

is designed to solve.
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Foley (1970) has shown that under the conditions we assume, the Lindahl Equilibrium

exists and is Pareto E�cient/Strongly E�cient. E�ciency can be seen from the optimality

condition

MRSi(Y
∗, y∗i ) = p∗i

and the fact that budget balance guarantees

I∑
i=1

p∗i = 1

Together these two facts give us Samuelson's Condition. This means Y ∗
L = Y ∗. In our

environment, if we set pi = δi, then the player's Lindahl optimization problem becomes

argmax
Yi

δig(Yi)− δiYi = argmax
Yi

g(Yi)− Yi

Which is the planner's problem. All players demand Y ∗
L and prices sum to 1 meaning

that p∗i = δi are the Lindahl Prices. It is intuitive that this pricing would yield the e�cient

outcome, because players are required to pay for the public good in proportion to the bene�t

they receive.

2.5 Properties of the MOCM

We begin with the result showing that the outcome of the MOCM matches with our

standard for e�ciency and fairness.

Theorem 1. The MOCM with weights equal to Lindahl prices implements the corresponding

Lindahl Equilibrium in weakly dominant strategies.

Proof. Under the MOCM, the individual's o�er selection problem can be rewritten as a

problem where the individual selects a contribution level subject to a restriction imposed by

the other o�ers.

Y M∗
i = argmax

Yi

δig
(
min

(
Yi, Y

i
min

))
− wi min

(
Yi, Y

i
min

)
(2)

Where
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Y i
min = min

j ̸=i
Yj

Player i's objective function in the Lindahl Equilibrium is

Y L∗
i = argmax

Yi

δig (Yi)− p∗iYi

Given that g(•) is increasing and concave, the objective function in the MOCM is in-

creasing in Yi up until Y L∗
i if wi = p∗i . Therefore, regardless of Y

i
min, as long as wi = p∗i , it is

weakly optimal to pick Y M∗
i = Y L∗

i .

For proof of the general version see Appendix A.1. Recall that in this case δi is the

Lindahl price for player i and therefore it is also the optimal weight in the MOCM.

This is the most important feature of the mechanism. It eliminates the free rider problem

by refunding those who make high o�ers relative to others. It is important to note that, while

the MOCM does implement the e�cient outcome as the result of each player choosing their

unique weakly dominant action, there are still other equilibria. For example, there is another

equilibrium where Yi = 0∀i. However, these other equilibria are generally not e�cient and

are not the result of dominant strategies, so they are generally less plausible.

This result also guarantees a level of �fairness� in the outcome, because players pay into

the public good relative to their equilibrium marginal bene�t from the public good.

In addition to implementing the e�cient outcome, this mechanism also has a number of

nice features. First, it is budget balanced. The amount spent on the public good is the exact

sum of contributions. This is very helpful for mechanisms that can't rely on governments or

other entities which can destroy and create money.

Second, no player will ever pay out more than their o�er even if the weights are wrong,

because

wi ∗min
j

xj

wj
≤ xi

As a result, the mechanism could be implemented through a system of refunds.

Third, the mechanism is individually rational in the sense that a rational player choosing

Yi optimally will always make weakly more than 0 regardless of how others play. This

mechanism always generates Pareto improvements with optimizing agents due to the veto

power held by individual contributors.
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2.6 Generalized Utility

Note that the functional form is unimportant for this main result, although it will be used

in later results. Neither Theorem 1 nor its proof depend on the quasi-linear utility function

from expression 1. We can apply the same result without modifying the wording to any

utility function of the general form

ui(Y, ωi − yi) (3)

where ui(•) is weakly concave and increasing. The ωis represent each player's budget,

although they are not strictly needed and can generally be ignored for purposes of optimiza-

tion. We do not rule out negative wealth or players contributing more than their endowment.

In this general setting, the MOCM also maintains its bene�cial features. The mechanism

is still �fair�, individually rational, budget balanced, and never requires people to pay more

than their o�er.

The proportional bene�t functional form used in most of the paper is used for two reasons.

First, it makes it much easier to compare the outcomes of imperfect implementations of the

MOCM. Second, it makes it easier to �nd the Lindahl prices. Lindahl prices are not, in

general, easy to see from utility functions just by inspection.

3 Imperfect Weights

As mentioned, the baseline MOCM requires a mechanism maker who can set the correct p∗.

In many cases the mechanism maker and participants may not have common knowledge of

all players' preferences. If the mechanism maker is aware of the correct p∗ but the player's

are not, this presents no issue due to the dominant strategy nature of the implementation.

If only the mechanism maker is unaware of the true p∗, e�ciency is still achievable

with only minor sacri�ces (see Appendix C). In cases where preferences are not common

knowledge, it may be possible to extract a player's information about the incentives of others.

However, this extraction may be incomplete, since information about the preferences of

others will often contain information about one's own preferences. To see one example where

information is extracted e�ciently see Section D.

In the rest of this section, we focus on showing what exactly happens when the weights

are not assigned correctly, either due to manipulation or lack of information.
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We will want some easy way to compare outcomes of the MOCM to the VCM in the

presence of manipulation and imperfect information. Note that we will not be theoretically

comparing the performance of the MOCM and the provision point mechanism under im-

perfect information, because the distortions a�ecting these two mechanisms are essentially

orthogonal. The MOCM is impacted by distortions in δi but not g(Y ) while the provision

point mechanism is impacted by distortions in g(Y ) but not δi. The results are therefore

largely mechanical and come down to determining which type of distortion is larger given

assumptions.

Given the proportional bene�t structure of this game, we can make use of the following

proposition to easily compare outcomes.

Remark 1. If Y (κ) = argmaxY κ ∗ g(Y )− Y , then Y (κ) is increasing in κ (in the strong set

order sense).

This result is a straightforward application of Milgrom and Shannon (1994)'s comparative

statics. The �rst best outcome(s) correspond to κ = 1 while the VCM outcome corresponds

to κ = maxi δi.

3.0.1 Incorrect Prices

First we consider what happens when a mechanism is implemented imperfectly in a general

sense. This will also be useful in examining the impact of other speci�c error types. Say that

the mechanism assigns a potentially incorrect weight wi to each participant.

In this case each participant is choosing

Y i
inc ∈ argmax

Yi

δi ∗ g
(
min

(
Yi, Y

i
min

))
− wi ∗min

(
Yi, Y

i
min

)
(4)

Where

Y i
min = min

j ̸=i
Yj

Proposition 1. The MOCM with incorrect prices can implement in dominant strategies the

solution to
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Y ∗
inc ∈ argmax

Y

(
min

i

(
δi
wi

)
g (Y )− Y

)

For proof see Appendix A.2. In this case the corresponding κ value which determines the

e�ciency of the outcome ismini

(
δi
wi

)
. The lowermini

(
δi
wi

)
, the worse the MOCM performs.

3.0.2 Manipulation

With the aid of Proposition 1 we can now consider what happens when an interested

party with full information selects the prices. Say that one agent, j, assigns prices wi for all

players with the restriction that
∑I

i=1 wi = 1. He knows the true p∗i s, but he is a normal

player, meaning he gains some bene�t from the public good and is potentially on the hook

for some of the cost. The game operates in two stages. First, the manipulator chooses wis,

then all players (including the manipulator) make their o�ers simultaneously. Assume that

after weights are assigned, players play the equilibrium described in Proposition 1.

The result is given by the following proposition

Proposition 2. If the mechanism weights are determined by individual j, the MOCM will

implement Y ∗
man total contributions in weakly dominant strategies, where

Y ∗
man = argmax

Y

(
1−δj
1−wj

g (Y )− Y
)

and wj ∈ [0, δj]

For proof see Appendix A.3. In this case, the corresponding k value is
1−δj
1−wj

. The exact

optimal value for wj depends on the structure of g (Y ) but it will always be weakly less than

δj.

Then there are two potentially competing pulls on the manipulator. They want to max-

imize the minimum adjusted o�er from other players but they also want to minimize their

own price wj.

By changing the values of wi, they can reduce the fraction of the public good they have to

pay for, but any manipulation will also reduce the maximum possible amount of public good

provided, since manipulation will always reduce mini

(
δi
wi

)
. For a given wj, the manipulator
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will want to equalize δi
wi

for all other players, so there is no incentive to distort the relative

prices of the other players.

3.1 Comparison of Outcomes

We now compare the outcomes in the manipulation and imperfect information cases with

the e�cient and VCM outcomes. We can use Remark 1 for this comparison, since the

discussed outcomes implement a total contribution that can be written in the relevant form.

This allows rank various scenarios in terms of total public goods contributions based on their

κ values. The following table summarizes the result

Mechanism/Situation κ Implemented Y

Social Planner 1 Y ∗

MOCM Perfect Conditions 1 Y ∗

VCM maxi δi Y ∗
V

MOCM Incorrect Information mini

(
δi
pi

)
Y ∗
inc

Homogeneous Price MOCM mini (Iδi) Y ∗
hom

MOCM Manipulation
1−δj
1−pj

Y ∗
man

The Homogeneous Price MOCM refers to an MOCM where pi =
1
I
∀i. We include this to

as a potential baseline when marginal bene�t information is not available or is ignored.

Note that in all cases κ ≤ 1, so there is no risk of ine�cient over-contribution. We know

that Y ∗ is optimal and higher than the other implemented Y s in the table, but it is not

immediately obvious how Y ∗
V , Y

∗
inc,Y

∗
hom, and Y ∗

man rank. With closer inspection we can see

some general tendencies.

For example, the MOCM with manipulation will be more e�cient than the VCM in many

circumstances.

Corollary 1. The VCM can only be more e�cient than the MOCM with manipulation if the

manipulator's δj > 0.5.
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It is only possible for mini

(
δi
pi

)
to be greater than

1−δj
1−pj

if pj ≥ 0.5. It generally not

common for public goods to provide more than half their bene�t to a single individual. Note

that δj > 1/2 does not guarantee that the MOCM with manipulation performs worse than

the VCM, but we can construct examples where it does. See Appendix B for such an example.

The Homogenous Price MOCM will outperform the VCM as long as the player that gets

the least bene�t from the public good gets at least 1/I of the bene�t for the player with

the highest bene�t. Therefore, the Homogeneous Price MOCM should perform well in cases

without extreme heterogeneity of bene�ts.

3.2 Random Noise and Imperfect Information

In general, it is only in the cases of high heterogeneity and low information that the

MOCM loses out to the VCM. Under certain circumstances, larger groups can make the

problems more acute.

Consider what happens when player i's bene�t from the public good is determined by a

random variable ηi so

ui(Y, yi) = ηig(Y )− yi (5)

Say ηis are drawn independently from a distribution with a PDF fη(•), maximum of

η̄, and a minimum of η. Note that we do not require the restriction that ηis sum to one

since that restriction makes no sense when comparing di�ering numbers of players. The true

Lindahl price in this situation would be p∗i =
ηi∑
j ηj

.

In this environment the κ for the VCM is maxiηi which converges to η̄ as the number of

players increases.

If the center has no information, the best they can do is the homogeneous MOCM. The

κ for the homogeneous MOCM is mini Iηi. We must consider several cases. If η ≥ 0 then

mini Iηi goes to in�nity with I. This is trivially better than the VCM. If η = 0 and fη(•)
is continuous then mini Iηi is converges to an exponential distribution with mean fη(0).

Whether this is better than the VCM depends on circumstance.

The real unambiguous problem for the MOCM arises when ηi ≤ 0 with positive proba-

bility. In this case, total contributions inevitably go to zero as the population increases. For

these situations, we developed the N-Group MOCM discussed in Section 4.1.
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4 Generalization and Robustness

In the �nal major section of this paper we discuss generalization and robustness of the

MOCM in the face of di�erent utility functions and imperfect information.

4.1 The N-Group MOCM for Charitable Contributions

We now discuss an approach to dealing with high-heterogeneity, low information environ-

ments with many people, the N-Group MOCM. For the discussion of this mechanism we will

use Nash Equilibrium as our solution mechanism, because the within group refund mecha-

nism creates an o� path coordination issue that removes the dominant strategy solve-ability

of the game.

The N-Group MOCM

Say that there are N groups indexed k ∈ {1, 2, ..., N}. Group k contains the set of

individuals with indexes i ∈ Sk.

De�ne the total group o�er

Xk =
∑
i∈Sk

xi

The mechanism states that

yi = xi +
1

|Sk|

(
Xk −min

l
Xl

)
This means that each player gets an equal refund if their group o�ered more than the

lowest total group o�er. We could make the refund proportional to the players' o�er, but

this would not fundamentally change the results.

Note that under this mechanism

Y = min
k

Xk

In this setting it is useful to de�ne the unbounded group solution.

X̃k(M) =
∑
i∈Sk

argmax
yi

ui

(
M

I∑
j=1

yj,−yi

)

In other words X̃k(M) is the total contributions value determined by group k if the

contributions of other groups did not constrain them. In cases where the VCM equilibrium
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is not unique, a �xed arbitrary element is selected.

Proposition 3. There exists a Nash Equilibrium of the N-Group MOCM game where Y =

M mink X̃k(M) with each group contributing mink X̃k(M).

For proof see Appendix. A.5 There are three things to consider from this result.

First, equilibrium is no longer in weakly dominant strategies. In the case of one group

contributing more than another, there needs to be some way to deal with the excess contribu-

tions. Any method one can employ introduces some level in coordination problem. However,

coordination is still less of an issue than in the PPM and VCM cases, because free riding

only exists within groups. Between groups there is no free riding, since all groups contribute

the same amount.

Second, a revenue maximizing charity should try to equalize X̃k(M) to the greatest extent

possible. Within the pivotal minimum o�er group MRSi(Y
∗, y∗i ) =

1
M
, assuming the group

makes some positive contribution. Marginal rates of substitution are higher in the non-pivotal

groups. E�ciency is therefore maximized when all groups are pivotal. It is easier to make

di�erent groups pivotal if the groups are more similar and it is often easier to keep groups

similar in the face of uncertainty if the groups are larger, so there is bene�t to larger groups.

Third, assuming that all groups can be made pivotal by equalizing X̃k(M), we have∑
MRSi(Y

∗, y∗i ) =
N
M
. This implies that more groups lead to higher e�ciency if each group

can be kept pivotal. If every player has their own group while remaining pivotal we have full

e�ciency, but this is only possible when players are identical.

There are therefore bene�ts to both small and large groups. Larger groups are more

homogeneous and smaller groups lead to stronger incentive. A natural question is then, what

is the optimal N? It seems natural that the answer could lie between N = 1 (the VCM)

and N = M (the homogeneous MOCM). Many existing charities use N = 2 when matching

donations, but are they could be leaving money on the table by not considering other Ns.

4.1.1 Optimal N

We now consider the problem of an individual who wishes to pick N is order to maximize

expected total contributions, as a charity might. We assume players are randomly assigned
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to groups of identical size. The key object in this analysis is G(x,N, I) which gives the CDF

for the group level contributions. Here I is the total number of people in the population.

The minimum group level contribution then has a CDF of 1 − (1−G (x,N, I))N . The

charity's problem then becomes.

max
N

N

∫ ∞

0

xd
(
1− (1−G (x,N, I))N

)
Using integration by parts we can transform this into a slightly simpler form

max
N

N

∫ ∞

0

(1−G (x,N, I))N dx

Increasing N here has several e�ects. There are two competing direct e�ects and two

e�ects through G (x,N, I). The �rst direct e�ect is that more groups means more groups to

contribute. This gives the N multiplier out front. The second direct e�ect is the power of

N which re�ects the fact that ,ore groups means more opportunities for a lower minimum

contribution level. The former e�ect tends to increase contribution levels while the latter

tends to decrease them

There are also two competing e�ects of N on G (•). First higher N means fewer people

in a group which generally drives down contributions, since there are fewer people to con-

tribute. Second, more groups means a contribution will be matched more times, multiplying

the marginal power of contributions. This increases the individual incentives to contribute.

Which e�ects dominate depends on the details of the setup.

Empirically, it should be possible to estimate G(x,N, I) for small Is using laboratory

settings and to estimate for N = 1 or 2 and large I using existing charitable contribution

data, but estimating for large I and N ≥ 3 will almost certainly require speci�c assumption

or data not currently or easily available. Still, we can explore the function space in order to

get a better sense of what to expect.

To that end, we present two examples of di�erent setups where we show how to calculate

G(x,N, I) and ultimately how to �nd the optimal N . These examples are chosen as extremes

extremes with regards to crowding out. The �rst example has full crowding out with only

one person contributing in each group. The second example has no crowding out with a

person's contributions being independent other contributions within their group.
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4.1.2 Baseline Example

First we consider something like the baseline utility function where people have a utility

from the public good proportional to ηi as in equation 5. Assume that the δis are distributed

identically based on CDF Fη(η). The ηis are not required to sum to one.

The target contribution level for an individual is g′−1
(

1
Nηi

)
, meaning that a person would

contribute this amount if alone in their group. TheN multiplier on ηi comes from the fact that

there areN−1 other groups matching the player's donation. Therefore the target contribution

levels are distributed Fη

(
1

Nu′(x)

)
. As discussed in Section 2.2, only the maximum target

contribution level holds in equilibrium, so G(x,N, I) = Fη

(
1

Ng′(x)

)I/N
.

Therefore the planner's objective becomes

max
N

N

∫ ∞

0

(
1− Fη

(
1

Ng′(x)

)K/N
)N

dx

Here N shows up in 4 places corresponding to the four competing e�ects mentioned above.

For the sake of creating a complete example, we make several further assumptions. First

we assume a simple G with two realizations of ηi: ηL and ηH with ηL < ηH . A player has ηL

with a probability pL. In this case the total contribution of the group only depends on the

ηis through whether or not a ηH is present within the group. This means that the planner's

objective becomes

(
g′−1

(
1

NηH

)
− g′−1

(
1

NηL

))(
1− p

I/N
L

)N
+ g′−1

(
1

NηL

)
Next assume g(Y ) = ln(Y ). The planner's objective simpli�es further to

N (ηH − ηL)
(
1− p

I/N
L

)N
+NηL

See Figure 1 to see how the population size in�uences optimal group size given di�erent

parameters.

As we can see, large populations generally lead to a larger optimal number of groups.

However, this growth is slower when the percent of potential donors in the population is

lower. Nonetheless, for realistic values of pL and K, an optimal value for N above two seems

reasonable.
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Figure 1: Optimal number of groups vs total population. g(Y ) = ln(Y ). Two player types:
ηH = 10 and ηL = 0. pL is probability of a player being low type. Note we do not restrict
the number of groups to integers in order to better show the trend.

4.1.3 Alternative Speci�cation

Next we consider an alternative speci�cation with no crowding out at all. Assume

ui(Y, ωi − yi) = ηiY − y2i

Again ηi is drawn independently from Fη(•) and does not have to sum to one. Here

y∗i = Nηi
2

which does not depend on the donations of others within the group. Assume ηi
2

has a mean µ and variance σ2. Further assume that groups are large enough and µ is large

relative to σ2 such that a normal approximation can be used without issue for the zero lower

bound.

In this case we get

G(x,N, I) = Φ
(
x, Iµ, INσ2

)
And the planner's objective function becomes

N

∫ ∞

0

(
1− Φ

(
x, Iµ, INσ2

))N
dx

In numerical simulations the optimal group size in this setup is generally a single indi-
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vidual, so the lower bound on group size is primarily determined by how many people are

needed for the normal approximation to be valid. When there is no crowding out, the smallest

group size that still invokes the central limit theorem provides a lower limit on the optimal

number of groups. Given some distributions of ηi it may be optimal to have an extremely

large number of very small groups. This is particularly true when Fη is near degenerate.

5 Conclusion

In this paper we have presented a novel high-information/low-power public good mech-

anism as a potential alternative for scenarios where PPM may not perform well. Generally,

high-information/low-power coercion mechanisms see substantial real world use and are of

signi�cant value when government intervention is unlikely or impossible (such as in the case

of international agreements). We showed that the mechanism has nice properties including

e�ciency, fairness, equilibrium in dominant strategies, budget balance, and individual ratio-

nality. The fairness and dominant strategy properties provide advantages over the PPM.

We showed that, even in poor information conditions, the mechanism can perform well. In

the presence manipulation, the mechanism should out-perform the VCM unless the problems

are extreme. In Appendix C we show e�ciency can be achieved if all players know each

other's utilities even if the mechanism maker does not. We also discuss in Appendix D how

players will generally be willing to provide accurate information about the utilities of others

as long as it does not reveal information about themselveand that that players will be willing

to report their own prices truthfully when public goods provision is particularly sensitive to

price mismatches.

The biggest weakness for the MOCM is a combination of heterogeneity, imperfect in-

formation, and large groups. In this case we can modify the mechanism into the N-Group

MOCM which takes advantage of the relative homogeneity of randomly chosen groups. The

N-Group MOCM is a generalization of the standard matching donations mechanism com-

monly used by non-pro�ts like National Public Radio or the Sierra Club to raise funds where

one group of donors matches the donations from another group. Under some conditions the

N-Group MOCM may open up more funding for charities than previous methods.

Overall, we contend that the MOCM is an excellent candidate for further research and

potential use in several policy domains.
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A Proofs

A.1 Proof of Theorem 1

Take a some Lindahl Equilibrium (there may be multiple) with a contribution level Y ∗
L . Note

that 2 is a restricted version of

Y ∗
i ∈ argmax

Yi

ui(Yi, ωi − p∗iYi)

One solution of this is Y ∗
i = Y ∗

L . Note that, since ui(•) is concave, the objective function
is weakly increasing on the interval [0, Y ∗

L ] and non-increasing beyond this interval.

By de�nition, the objective function is the same for all optimal choices of Yi and is weakly

worse for any Yi > Y ∗
L . Therefore, regardless of Y i

min it is weakly optimal to pick Yi = Y ∗
L

and the player is indi�erent between all elements of the set.

A.2 Proof of Proposition 1

To see this, note that 4 is the same as

Y i
inc ∈ argmax

Yi

δi
wi

∗ g
(
min

(
Yi, Y

i
min

))
−min

(
Yi, Y

i
min

)
Similar to the proof of Proposition 1, the concavity of g(•) guarantees that player i's

objective function is increasing in Yi∀Yi ∈ [0, sup (Y i∗
inc)) where

Y i∗
inc = argmax

Yi

(
δi
wi
g (Yi)− Yi

)
As such, it is a weakly dominant strategy to pick Yi ∈ Y i∗

inc. If all players do this the

minimum Yi chosen gets implemented. From proposition 1, we know that the Y i∗
incs are

depend on δi
wi

in a manner that is monotone in the strong set order sense. Therefore, the

implemented Yi must be an element of the lowest Y i∗
inc corresponding with the lowest δi

wi
.
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A.3 Proof of Proposition 2

The manipulator will always want to pick wj ≤ δj. We show this by contradiction. Note

that he can implement Y ∗ by setting wj = δj. Say the manipulator picks wj > δj. De�ne

Ỹj = argmax
Yi

(δj ∗ g (Yj)− wjYj)

We know

δj ∗ g (Y ∗)− δjY
∗ ≥ δj ∗ g

(
Ỹj

)
− δjỸj > δj ∗ g

(
Ỹj

)
− wjỸj

Hence wj cannot be optimal.

Given his own mechanism weight wj > δj, the manipulator will want to maximize total

contributions Y . To see this, note that

δj
wj

∗ g (Y )− Y

is increasing in Y for all Y ∈ [0, Ȳ ∗
j ] where

Ȳ ∗
j ∈ argmax

Y

δj
wj

∗ g (Y )− Y

Note that Ȳ ∗
j > Y ∗ by Proposition 1. Therefore, the manipulator's objective function is

increasing in Y for the entire range of Y s that is feasible given pj > δj.

Since the equilibrium Y depends on the lowest δi
wi
, it is optimal to allocate the pi in such

a manner as equalizes this across all other individuals.

We know

1− wj =
∑
i ̸=j

wi

So we have

wi =
1−pj
1−δj

δi

Which satis�es the summand and the requirement that
wj

δj
be equalized.

Therefore,
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δi
wi

=
1−δj
1−wj

∀i ̸= j

meaning all players other than j will make o�ers that implement Y ∈ Y ∗
man, and the

manipulating player j will make an o�er weakly greater than Y ∗
man.

A.4 Proof of Corollary 1

Since wj ∈ [0, δj], we know that
1−δj
1−wj

∈ [1 − δj, 1]. This implies that manipulation has a

higher κ as long as maxi (δi) ≤ 1− δj where j is the manipulating agent.

It is only possible for the manipulation mechanisms κ to be lower if maxi (δi) > 1 − δj.

Note

1− δj =
∑
i ̸=j

δi ≥ δi∀i ̸= j

So this can only happen if δj > 1/2.

A.5 Proof of Proposition 3

Say that k∗ = argmink X̃k(M) is the index of the pivotal group.

In equilibrium it must be that every group is providing the same total o�ers. Due to

the refund mechanism, money beyond the minimum group o�er gets redistributed among all

group members evenly. This means that if a group is o�ering more than the minimum group

o�er any member can reduce their o�er and increase their payo�. As such we can assume

that all players are restricted to be unable to make o�ers which could increase their group

o�er beyond the minimum group o�er from other groups WLOG (minimum restriction 0).

First consider group k∗. They are essentially playing the VCM with a multiplier on

bene�ts and a restriction that is non-binding at the equilibrium corresponding to X̃k∗(M).

Hence, they have no reason to deviate from that o�er level.

Next consider group k ̸= k∗. They are essentially playing the VCM with a multiplier on

bene�ts and a restriction that
∑

i∈Sk
xi ≤ X̃k∗(M). Due to the concave nature of utilities and
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by construction of X̃k(M), the restriction will be binding. If total contributions are less than

X̃k(M) at least one player will be able to pro�tably deviate by increasing o�er by de�nition.

B Manipulation Worse than VCM Example

Consider the following setup. There are two individuals with δ1 = 3
4
and δ2 = 1

4
. Assume

g(y) is piece-wise linear and weakly concave. The �rst section has a horizontal length Y1

and has a slope 4 + ϵ. The second piece has a horizontal length Y2 and has slope 4
3
+ ϵ.

Past the second section, g(y)has a slope of zero. The example works with strictly concave

approximations, but it is easier to see in the piece-wise linear case.

If player 1 is the manipulator, he can implement Y = Y1 choosing w1 = 0 because that is

what Player 2 will naturally bid. He can also implement Y = Y1 + Y2 by choosing w1 such

that the Player 2 will choose the higher level. This requires the following condition

1
4
(4/3 + ϵ) ≥ w2

Since weights must sum to one, this can be rewritten as

w1 ≥ 2/3− ϵ/4

We can make Y2 arbitrarily small such that the utility gains going from the �rst kink

to the second are negligible, but the di�erence in cost is approximately (2/3)Y1. If Y1 is

relatively large, manipulator will implement Y1 which is slightly smaller (and slightly less

e�cient) than the natural mechanism outcome.

C Checked Leader MOCM

The MOCM as described requires the mechanism maker to have full knowledge of the pref-

erences of all individuals involved in the public good as is typical in discussions of the PPM.

However, there are other informational environments that the PPM can be adapted to. For

example, the PQ mechanism of Van Essen and Walker (2017) works well in environments
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where the mechanism maker has no knowledge but preferences are common knowledge among

participants.

We can also adapt the MOCM for such an environment. There are actually a number

of ways to do this, but we will focus on the most illustrative called Checked Leader MOCM

(CL-MOCM).

This mechanism enriches the MOCM into a 3 stage game. There are two players (a Leader

and a Checker) who each have a special role in this mechanism. They should be selected based

on the amount of information they possess with the leader requiring information about the

other participants and the checker requiring information about the leader. Say that Player

1 is the Checker and Player 2 is the Leader

The Checked Leader MOCM goes like this

1. The Checker picks w2 for the Leader

2. The Leader picks w−2 (all wi other than w2) subject to
∑

i ̸=2wi = 1− w2

3. Players play MOCM game

After the �nal stage, the checker faces a penalty if Y2 ̸= Y3. This guarantees w2 is picked

correctly, since any other pick will cause discrepancy. Note that this penalty does remove the

guarantee of budget balance and of individual rationality for the checker, although this will

not be relevant in equilibrium and the mechanism can be guaranteed not to run a de�cit.

In this setup we have the following result

Proposition 4. Say that utilities take the form in expression 3 and are increasing, strictly

concave, and twice continuously di�erentiable. Assuming that the leader knows all preferences

within the group and that the checker knows the preference of the leader, then there exists a

SPE of the CL-MOCM which implements a Lindahl Equilibrium and reveals Lindahl Prices.

Proof.

Stage 3: We work by backwards induction. By strict concavity, we know in the �nal stage

that each person single weakly dominant strategy that is decreasing in wi in the strong set

order sense. Call the resulting adjusted o�ers Yi(wi).
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Stage 2: Player 2's selection of w−2 only in�uences his payo� through the restriction it

places on his maximum e�ective adjusted o�er. This restriction is Ȳ = mini ̸=2 Yi(wi). By

monotonicity and strict concavity and continuous di�erentiability, this restriction is maxi-

mized when Yi(wi) = Yj(wj)∀i, j ̸= 2. Therefore Player 2 will always choose w−2 to equalize

adjusted o�ers.

Stage 1: Player 1 may have some incentive to set w2 higher than p∗2 ordinarily (in order to

slightly reduce w1) but this incentive can be counteracted by the arbitrarily large mismatch

penalty. To avoid this penalty, Player 1 must set w2such that Player 2 will choose the same

Y as Player 3. In stage 2 we showed that this is also the same Y chosen by all players other

than Player 2. This means that the resulting weights meet the de�nition of Lindahl Prices.

We can see that if Player 1 picks w2 = p∗2 then Player 2 will pick w−2 = p∗
−2 and everyone

will make adjusted o�ers of Y ∗
L

Note this proposition used the general utility form, not the quasi linear form.

This proposition takes advantage of two facts: �rst that players wish to reveal their

information about the preferences of others; second, that when prices are correct, adjusted

contributions match. This is not the only mechanism which can be used to elicit Lindahl

Prices when they are common knowledge among participants. For example, one could also

use a mechanism where each player proposes a price vector and then the true price vector

is equal to the most frequently proposed vector. If no two players agree, then the MOCM

is not executed. This mechanism maintains the guaranteed budget balance and individual

rationality, but it pays a cost in a much greater multiplicity of equilibria.

D Information Extraction Example

D.1 Other's Price Revelation

Players can be induced to reveal information about others if it does not reveal information

about their own price.

Consider a proportional bene�t environment where each player knows their own δi where

δi ∈ {δL, δM , δH} where δL < δM < δH . Only one player can have each δ. A priori each

matching of δ to player is equally likely.
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Say that each player receives si ∈ {1, 2, 3}\{i} which is equal to j if δj > δk with prob-

ability ρ > 0.5. In other words it is an informative signal about which other player has a

higher δ.

Each player sends the mechanism maker a signal si ∈ {1, 2, 3}\{i}. The mechanism maker

then selects a vector of prices p summing to 1 as a function of messaged received. Consider

a mechanism which assigns wi = δH for whichever i corresponds to the most signals received

and wj = δL for whichever j corresponds to the fewest received signals. The remaining player

receives a price δM . Ties are broken uniformly randomly. Note that this is not necessarily

the optimal mechanism in terms of e�ciency.

Call this the other price information extraction game.

Remark 2. In the information extraction game, each player revealing their signal is a Subgame

Perfect Equilibrium.

Proof. A player's expected payo� is decreasing in their price and increasing in the

minimum adjusted o�er of other players. Given two players and two prices, the minimum

adjusted o�er between those players is higher if the player with the higher δ receives the

higher price.

Given honest revelation by all players, the distribution of a player i's prices is independent

of their signal sent given their lack of knowledge about other player's signals. Further, it can

be shown by checking cases that the given a price wi the probability of other players receiving

their more appropriate price matching is strictly higher when player i reveals truthfully.

Therefore revealing truthfully is optimal in equilibrium.

D.2 Own Price Revelation

When the e�ciency motive dominates and the incentive for manipulation is low, it can

be possible to get players to truthfully reveal their own prices.

Again consider a proportional bene�t environment where each player knows their own δi

where δi ∈ {δL, δM , δH} where δL < δM < δH . Only one player can have each δ. A priori each

matching of δ to player is equally likely. We denote players in this by L,M,or H depending

on their δ. This time we assume a provision point-like utility function
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g(Y ) =

Y (1 + ϵ) Y < 10

10 + 10ϵ Y ≥ 10

Call this the matching prices environment.

Note under this public good production technology, if k is large enough, that guarantees

that the mechanism runner cannot guess the order of δ wrong and still produce a positive

value from the public good. We show this with the following Lemma.

Lemma 1. We can guarantee that Y = 0 in the matching prices environment whenever

wi = δi is assigned to a player with δj ̸=i if δM(1 + ϵ) < δH and δL(1 + ϵ) < δM

Proof.

One of these will occur in any mis-atribution of weights

Case 1 Setting wM = δH .

Minimum Yi will be player M 's. His unconstrained optimization becomes

δMY (1 + ϵ)− δHY

So YM = 0 if

δM(1 + ϵ) < δH

Case 2 Setting wL = δM .

Minimum Yi will be player L's. His unconstrained optimization becomes

δLY (1 + ϵ)− δMY

So YL = 0 if

δL(1 + ϵ) < δM

Case 3 Setting wL = δH .

Minimum Yi will be player L's. His unconstrained optimization becomes

δLY (1 + ϵ)− δHY
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So YL = 0 if

δL(1 + ϵ) < δH

Note the case 3 condition is implied by the conditions from the other conditions

For the remaining discussion assume δs satisfy the conditions. Each player sends the

mechanism maker a signal si ∈ {L,M,H}. The mechanism maker then attempts to match

the correct weights to each player.

We will assume that the credulous mechanism works as follows. If a player is the only

one to send signal si = j then they receive wi = δj. If multiple players send the same signal,

then one is chosen randomly to receive the corresponding price and the other receives the

remaining price. If all players send the same signal, then all receive wi equal to a random

δj. We call the game created by using the credulous mechanism in the matching prices

environment the own price information extraction game.

We can now present the following corollary

Corollary 2. There is an equilibrium in the own price information extraction game in weakly

dominant strategies where each player reveals δi truthfully.

Proof. We know that the player gets one of two payo�s: (1) the δi10ϵ they get when each

player gets the correct price and (2) the 0 that they get when at least one player gets the

wrong price . We also know (1) > (2). Therefore, the best action is the one which maximizes

the chance of (1).

Case 1: All other players reveal truthfully. Player i revealing truthfully generates (1)

with certainty.

Case 2: One other player sends an incorrect signal sj. Sending the correct si generates

(1) with probability 1/2 regardless of which wrong signal was sent. Sending a wrong signal

not equal to sj guarantees (2) since there is now a wrong signal uncontested by a right signal.

Sending a wrong signal equal to sj will lead to all players sending the same signal which

means (1) is generated with a probability of 1/6.

Case 3: Both other players send an incorrect signal. There will always be an uncontested

incorrect signal, so (2) is guaranteed.
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Therefore, reporting truthfully is a weakly dominant strategy.
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