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Abstract

Previous economic models of memory have failed to incorporate one of its

critical features: decay. It has long been established that memories fade over

time, losing �delity. In this paper we show that a framework of rational memory

with decay can produce the recency e�ect and other economically interesting

phenomena across a wide range of economic contexts. We apply the framework to

models of elections, insurance purchasing, and advertising. In these settings, the

framework reproduces empirically established behaviors and produces additional

insights.

1 Introduction

There is substantial evidence in the experimental literature that people have imperfect

memory. One signi�cant imperfection is the tendency of memories to decay over time,

becoming noisier and less reliable. The decay of memories is one of the earliest and

most robust �ndings of empirical psychology. First studied by Ebbinghaus (1885), it

has been supported consistently in experiments on both animals and humans since

that time (Averell and Heathcote, 2009; Averell and Heathcote, 2011; Murre and Dros,

2015). However, most existing economic models of imperfect memory do not directly

incorporate decay, instead focusing on other memory features such as limited capacity,

context dependence, retrieval, and motivated forgetting.1
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1Limited Capacity: Kocer (2010); Drakopoulos et al. (2013); Wilson (2014); Sanjurjo (2015)
Context Dependence: Bordalo et al. (2020); Wachter and Kahana (2020)
Motivated forgetting: Bénabou and Tirole (2002), Zimmermann (2020)
Retrieval: Afrouzi et al. (2020)
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Research has also found that memory consistently responds to incentives, with mem-

ories linked to high rewards decaying more slowly (Weiner, 1966; Loftus and Wickens,

1970; Spaniol et al., 2014). Performance on memory tasks increases as the incentives

for a correct response increase, a phenomenon which would not arise if memory decay

were a purely exogenous process (Wieth and Burns, 2006; Spaniol et al., 2014). This

implies that memory retention is at least partially determined by a rational optimizing

process.

In this paper we propose an optimizing framework of imperfect memory with de-

cay. This framework provides a tractable and intuitive way to model the link between

accuracy, time, and e�ort in the memory system. Using this framework we can derive

temporal comparative statics and estimate the welfare impact of imperfect memory.

For example, we can predict how the likelihood of a good election outcome changes as

campaign seasons get longer and estimate how much value is lost to imperfect memory

in insurance markets.

Importantly, this framework also generates the �recency e�ect� as a natural result

of decay and Bayesian updating. This result is appealing in an Occam's Razor sense,

because it combines two important and well studied psychological e�ects into the same

phenomenon. The recency e�ect is a widely known psychological phenomenon whereby

information that has arrived recently has a much larger impact on beliefs and behavior

than older information (Ciccarelli and White, 2007).2 The recency e�ect has been found

to have signi�cant impacts on economic behavior, as discussed by Kahneman and Tver-

sky (2000). For example, the recency e�ect can in�uence voter turnout (Panagopoulos,

2011) and insurance purchasing (Kunreuther et al., 2013), and legislators often take

advantage of the e�ect when deciding what legislation to pass (Amacher and Boyes,

1978). The recency e�ect can also account for persistent non-equilibrium play and the

impact of di�erent feedback regimes in games (Fudenberg and Peysakhovich, 2016).

To our knowledge, ours is the �rst formal memory framework which directly ex-

plores the natural connection between memory decay and the recency e�ect. Previous

economic and psychology literatures have treated the recency e�ect as an exogenous

process separate from memory decay or as the result of salience, but these approaches

are not fully satisfying. Without some explanation of why recent memories are more

salient, salience based explanations of the recency e�ect are essentially just re-phrasings.

In Section 2 we begin by presenting our costly memory framework inspired by a

simple data storage problem with information loss. In this framework, the eventual

2The recency e�ect is also often referred to as recency bias, but we will avoid that term because it
is not entirely clear what constitutes a bias when agents are rational and Bayesian.
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accuracy of a memory is determined by how much e�ort was devoted to storing it and

how long it has been stored.

For example, consider what happens when a person parks in an unfamiliar parking

structure. They could simply glance around and go about their business, hoping they

will be lucky enough to �nd their way back. Alternatively, they could repeat the

spot row number and �oor to themselves several times, rehearsing and enhancing the

memory. Doing this would slow the memory's decay and improve odds of later success.

If they were very concerned, they could develop a mnemonic for their row and �oor

or they could pull out their phone and take a picture. People have many tools, both

mental and physical, that help them store information. Di�erent tools have di�erent

rates of decay and di�erent costs associated with them.3

For readers who believe that players will default to their most secure external mem-

ory media in most cases, we note that most people record very little of the information

that they are exposed to in a day. Also information being learned is often subjective

and cannot be e�ectively conveyed in an explicit way, leaving only mental tools avail-

able. For example, in learning about probabilities one may intellectually �know� the

probability of disaster abstractly from exogenous information, but without experience

memories one does not know what that probability really means.4

In Section 3 we provide the general results which will be applied in later sections.

Section 3.1 looks at simple environments with only one exogenous signal and one action

and shows how e�ort and behavior respond to changes in delay, incentives, and prior.

Section 3.2 looks at environments with multiple signals and one action. These results

quantify the recency e�ect in such settings and examine how it changes with the rate

of decay. There is also a result showing how total recalled information increases with

the length of the information gathering period. Section 3.3 is about environments with

multiple signals and actions. The result here provides conditions for memory e�ort to

converge to a stable level. There is a table which summarizes these results in Section

3.4.

In Section 4. We present solved examples for the general results in order to build

intuition and demonstrate potential portability.

In Section 5 we apply our framework to a voting setting where every voter receives a

sequence of informative exogenous signals and then votes between two alternatives. This

setting could plausibly represent jury voting or undecided voters in a political election.

There is evidence that recency e�ects play a strong role in jury trials (Costabile and

3For a review of the recent literature on memory consolidation see Squire et al. (2015).
4Abdellaoui et al. (2011) discuss the di�erence in behavior between revealed and experienced utility

contexts.
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Klein, 2008; Kerr and Jung, 2018). Studies have also found that the timing of political

messages and campaigns can have a signi�cant impact on voter behavior with events

immediately preceding an election having a much stronger e�ect than those that happen

earlier in the campaign season (e.g. Panagopoulos, 2011; Invernizzi, 2020).

For simplicity, we assume that all voters have aligned preferences and majority rule.

This model is designed to isolate the e�ects of memory. The impact of things like

unaligned preferences, skewed priors, and non-majority voting will introduce strategic

voting, but will not interact with memory except to decrease the value of information.

The value of information is discussed in Section A.11.

The voter wants to remember many exogenous signals in order to improve his or

her chance of voting correctly in the case that he or she is pivotal. Due to decay, it

is more di�cult to remember earlier signals long enough to vote based on them. We

�nd that the recency e�ect increases as signals become more informative, because more

informative signals are more substitutable. Rational memory can reduce the impact of

imperfect memory on utility relative to purely exogenous decay, but later events are

still given a greater weight.

The model also generates a somewhat counter-intuitive result: when memory re-

sources are rationally allocated, the performance of the electorate can worsen as the

size of the electorate increases. As the number of voters increases, the probability of

pivotality decreases, which in turn lowers player incentives and e�orts. Because mem-

ory e�ort is a public good there is a free rider e�ect which means that new players may

not bring in enough information to compensate the loss in existing players' information.

This provides a stark contrast with the predictions of non-optimizing approaches to im-

perfect memory, where the Condorcet Jury Theorem guarantees that more participants

will improve performance.

In Section 6 we apply our framework to make predictions in an insurance buying

model. There is a phenomenon sometimes called �insurance cycles� where insurance

demand spikes immediately after a disaster, only to drop back down when no new

disasters are forthcoming.5 This type of behavior can lead to serious ine�ciencies, with

substantial under- or over-purchasing of insurance.

In this game individuals live in either a high-risk or a low-risk world. Both worlds

produce shocks, with the high-risk world producing larger shocks on average. Insurance

which fully protects against shocks is available. The price of this insurance is set in such

a way that the player wants to buy insurance in a high-risk world and not in a low-risk

5Browne and Hoyt (2000); Dumm et al. (2017); Dumm et al. (2020); Kunreuther et al. (2013);
Volkman-Wise (2015)
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world, which means that the player wants to learn the state of the world. As such,

the player has an incentive to remember past shocks. However, information about past

shocks cannot be reliably stored inde�nitely, so as in the voting model, players primarily

use more recent information.

In our model, the diminishing returns on information guarantee that the true risk

level is never learned. This leads to beliefs evolving in a way that resembles a bounded

random walk with no asymptotic convergence, which in turn leads to insurance cycles.

We �nd that even when memory costs are very low, if decay is substantial insurance cy-

cles can lead to substantial under- or over-purchasing of insurance. The impermanence

of information suggests that informational interventions can only be e�ective if they

provide consistent access to information. Providing one-time access to historical data

is likely to improve e�ciency only in the short term, and cannot provide experiential

information. The results could also be used to support state-sponsored insurance or

insurance mandates as long as the insurance policy rules are set by institutions that

are not as cognitively constrained as private individuals.

We devote the main body of this paper to primarily decision theoretic environments

to better focus the discussion, but we do brie�y explore the more game theoretic setting

of manipulation in Appendix D.

Note that ours is not a complete model of memory and even more incomplete as

a model of information processing. Our model is meant to capture several �rst order

economically important features of memory while remaining simple and portable. We

do not claim that this is an exhaustive model of what is occurring in the real world

scenarios of the applications, but the e�ects we describe are likely signi�cant based on

existing research and policy. Our model focuses on using two robustly replicable and

broadly applicable features of memory (decay and response to incentives) to construct a

model which can transparently and simply explain the recency e�ect and other memory

related behaviors.

1.1 Memory Literature

There are many memory e�ects which may be considered as being of �rst order im-

portance in some component of economic decision making including limited capacity,

context dependence, motivated forgetting, primacy e�ects, repetition e�ects, spacing

e�ects, e�ortful memory, and decay.6 The requirement that e�ort is selected before the

6Limited capacity: Cowan (2001)
Context dependence: Gruneberg (1994)
Motivated forgetting: Weiner (1968)
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exogenous signal is realized is innocuous in our examples, since every exogenous signal

realization is essentially equally informative. In less symmetric signal structures, how-

ever, this will not always be the case. Players are assumed to remember the structure

of the game, so they can deduce their past e�ort allocations and thus the precision of

their memory signal.

There are potential modeling targets in memory encoding, maintenance, and re-

trieval. The degree to which various e�ects are separate or caused jointly by underlying

features of the system is unclear and in some cases hotly contested, but all of these

e�ects have been consistently observed to signi�cantly impact behavior. This can make

it extremely tempting to try to add more memory features to a model, but doing so can

result in models that are intractable or only useful in speci�c highly memory focused

settings.

Previous economic models have focused primarily on context dependence, limited

capacity, or motivated forgetting.7 Our model focuses primarily on decay and e�ortful

memory with particular focus on encoding (although it can also provide insight into

repetition e�ects and spacing e�ects).

Several existing models impose a cost or limit on the amount of information stored in

memory (Kocer, 2010; Drakopoulos et al., 2013; Wilson, 2014; Sanjurjo, 2015; Afrouzi

et al. (2020)). These models provide useful descriptions of short-term working memory,

which is characterized by hard limits on how much information can be available at

one time.8 However, unintentional forgetting does not occur in these models, nor do

memories decay over time. In addition, many of these models9 use hard limits on

memory rather than making memory costly, so they do not allow memory to respond

to incentives unless an outside use for memory resources is explicitly included.

One economic model proposed by Bénabou and Tirole (2002) has memories vanish

as a result of motivated forgetting. In this model, memories are forgotten to maintain

positive beliefs about oneself. Some of the newest economic papers on memory, Bordalo

et al. (2020) and Wachter and Kahana (2020), focus on context dependence which is

a property whereby information is easier to retrieve from memory if it was initially

encoded in a similar environment.

Repetition and spacing e�ects: Greene (2008)
E�ortful memory: Hasher and Zagks (1979)
Decay: Ebbinghaus (1885)
7Limited capacity: Kocer (2010); Drakopoulos et al. (2013); Wilson (2014); Sanjurjo (2015)
Context Dependence: Bordalo et al. (2020); Wachter and Kahana (2020)
Motivated forgetting: Bénabou and Tirole (2002)
8Miller (1994)
9Speci�cally Kocer (2010); Drakopoulos et al. (2013); and Wilson (2014).
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Both motivated forgetting and context dependence can contribute to memory decay.

This can lead to identi�cation issues. It can be di�cult to tell the di�erence between

memory decay, context dependence, or a shifting state of the world rendering older

information obsolete. In some real world applications it will not be possible to rule out

a shifting state, although in cases like earthquake insurance all evidence points to the

state remaining largely consistent over time (barring fracking or other interventions).

Single-system psychological models of memory like the one discussed in Howard and

Kahana (1999) often attribute decay and recency entirely to contextual drift and con-

text dependence. Memories are context-dependent, and as more time passes the recall

context generally becomes further removed from the context of the initial exposure. In

the lab it is generally possible to rule out state changes, but context dependence can-

not be fully controlled. That said, laboratory experiments do generally control context

as much as is practically possible and observe very regular rates of memory decay.10

There is also direct neurological evidence of decay unrelated to context dependence

which supports decay as a separate phenomenon (Jonides et al., 2008).

This separation makes sense, since decay and context dependence are fundamentally

di�erent types of mechanisms. Using a computer based metaphor, there are two ways to

fail in retrieving a memory: addressing issues and content decay. Addressing issues are

when the location of a memory is lost. Content decay is when the information contained

in the memory has been destroyed or damaged. Context dependence is an addressing

issue while decay is a content problem. Note when addressing issues are present, the

memory is e�ectively nonexistent as in Mullainathan (2002), discussed below. Content

damage has a more continuous impact, reducing the reliability and emotional intensity

of the memory. Evidence suggests that content decay and addressing decays are di�erent

e�ects with di�erent underlying mechanisms. Cooper et al. (2019) �nd that content

decay is mostly a mechanical e�ect of time, while addressing decay can be more a�ected

by other factors like the emotional salience of an event.

Competition for attention can also partially explain the recency e�ect in settings

where participants quickly memorize lists of words. In the psychology literature, the

recency e�ect is often discussed along with a primacy e�ect where items that arrive

earlier are recalled more accurately than those in the middle (Brodie and Murdock Jr,

1977; Glenberg et al., 1980). This e�ect cannot be explained by decay; it is generally

attributed to the brain's limited ability to encode multiple memories within a speci�c

time frame (or to �salience�). Items near the beginning or end of a list do not have to

compete for attention as �ercely as those near the middle. However, the primacy e�ect

10Averell and Heathcote (2009); Averell and Heathcote (2011); Murre and Dros (2015)
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is often found to be smaller than the recency e�ect even in experimental settings where

information arrives rapidly, so decay likely still plays a role in such settings (Garbinsky

et al., 2014). In the systems we model, information is arriving infrequently enough

that encoding interference should not be important, so the primacy e�ect is unlikely to

be substantial. There is evidence that the primacy e�ect may not be present in some

investment-type decisions while the recency e�ect is highly signi�cant (Pinsker, 2011).

While the connection between memory decay and the recency e�ect is fairly direct

and may at �rst seem obvious and even mechanical, thus far the connection has not

been highlighted in the literature. Two-system models like those described in Glenberg

et al. (1980) generally attribute the recency e�ect to the fact that it is easier to retrieve

memories from the short-term memory system than from the long-term memory system.

However, this type of model is not able to account for recency e�ects on long-term

memories, because all memories are presumably being retrieved from the long-term

system in such cases (Bjork and Whitten, 1974).

Economic models with a recency e�ect generally do not seek to explain it and instead

treat it as an exogenous weighting of evidence (Fudenberg and Levine, 2014; Fudenberg

and Peysakhovich, 2016).

Mullainathan's (2002) model includes both a recency e�ect and decay, but the two

features are not directly linked. Rather, newer information is given higher weight due

to a dynamically changing state of the world. Older events have a chance of being

forgotten every period, but any information that still exists is equally reliable. His

model also assumes that players are naive regarding the fact that their memories decay,

so agents are not fully Bayesian. Afrouzi et al. (2020) similarly present a model where

recency is generated by a dynamic state of the world. Their model focuses on costly

information retrieval.

Brocas and Carrillo (2016) present a noisy memory model with Bayesian updating

which allows for unintentional forgetting, but their model is not dynamic and does not

include time, so it cannot be used to explore the recency e�ect or decay.

The most similar framework to our own, which includes both decay and the recency

e�ect, is being developed contemporaneously by Azeredo da Silveira and Woodford

(2019). Their work focuses on the question of which elements of current beliefs will

be stored in memory and how precisely they will be stored, when there is no a priori

constraint on the structure of memories. Our paper instead takes as given an �episodic�

structure where memories of di�erent events are stored separately, and focuses on rea-

sons for endogenous variation in the precision with which di�erent events are stored �

an issue that is not relevant to the applications that they consider. We compare the
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models more thoroughly and technically in Section 2.2.

1.2 Identi�cation and Model Similarities

While time plays a critical role in our theory, in single action theoretical environments

it only in�uences the di�culty of retaining information. This means that time could be

replaced by other di�culty in�uencing factors without substantially changing results.

Therefore, many of the results we present could also be used in models of single or

multi-dimensional rational inattention with non-temporal �di�culty� factors. This is

unsurprising as both memory and attention are essentially just noisy information chan-

nels. With the single noted exception of Remark 1 our results are all also novel within

the rational inattention space to our knowledge, potentially providing a broader use for

results.

Note, however, that our model is not isomorphic to a model with rational inattention

and exogenous memory decay, because delay and e�ort interact. E�ort in�uences the

marginal impact of delay and vice versa. E�ort is speci�cally impacting decay.

That said, there are some di�culties for someone trying to observationally separate

the role of memory and attention. In decision problems with only one action, it is

impossible to know whether information was forgotten or never acquired in the �rst

place. In general, it is only possible to de�nitively identify memory decay directly in

decision problems with multiple actions (by noting that information once had has been

lost).

Indirect identi�cation of decay is possible by comparing responses to information

presented with di�erent delays between exposure and action. If di�erent delays lead to

di�erent responses in otherwise identical decision contexts, this implies the presence of

decay. This is only an indirect observation of decay, however, because the di�erence

in behavior observed may be partially due to direct information decay, and partially

due to a change in attention strategy in response to the presence of decay. If a person

knows they will forget something after a while, they won't bother trying to remember

it if it isn't immediately useful. Observing a reduction in information after a longer

delay in this case implies that decay exists but does not imply that decay is responsible

for the full decrease in information.

In the text we will point out contexts where attention and memory may be obser-

vationally confounded and where they can be more fully disentangled. When a result

could be generated in a Caplin and Dean (2015) style rational inattention framework
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with no decay, we say that there is an attention analog for that result.11

Note that it is ambiguous both observationally and within our model whether e�ort

directly in�uences decay or merely in�uences attention gathering in response to decay.

Without further assumptions on the decay process, any non-adjustable rational mem-

ory model, including our own, will be isomorphic to a rational attention model with

exogenous memory decay. We do not concern ourselves overly with this distinction as

the predictions are the same.

2 Rational Memory Framework

2.1 The Setting

We begin by explaining the framework conceptually. The player receives a sequence of

signals over time informing him about a static state of the world. In simpler settings,

this signal may be fully informative, leaving imperfect memory as the only source of

uncertainty, but often this will not be the case. In elections, for example, the voter will

rarely be presented with de�nitive evidence that one candidate is the better choice.

When each period begins, the player decides how much e�ort to devote to remem-

bering the information he will receive during the period. This level of e�ort determines

how well he will remember the current period's events in the future. The longer a

memory of a past event is stored, the more it decays. The more e�ort a player devotes

to memory storage during a speci�c period, the better he can preserve his memory of

that period's event.

Next, in every period, the player will consult his memory of past events or signals.

He will combine his memories with his prior to determine his posterior beliefs over

states. After he has formed posterior beliefs, the player will choose an action that

maximizes his expected utility based on those posterior beliefs. Aside from restricted

memory, agents are assumed to be fully rational and sophisticated.

We now present the framework more formally. There is a set of time periods t ∈
{1, 2, ..., T} which may or may not be �nite. If T is not �nite, the game ends every

period with a probability β ∈ (0, 1). There is also a static state of the world θ, which

comes from a state space Θ ⊆ R. The player has a prior over states of the world

π ∈ ∆(Θ). There is a space of actions A ⊆ R with elements a.

There are two important types of signal spaces in this framework. First, there is a

11Sometimes the implicit rational inattention model must be supplemented by introducing multiple
information gathering periods for the analog to make sense.
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space of exogenous signals S ⊆ R with elements denoted s. The exogenous signals can

be thought of as the events that the player wishes to remember. The probability of

receiving a given exogenous signal depends on the state of the world and is exogenous.

In order to maintain tractability when multiple memories are involved, we will be using

only normally distributed signals and uninformative signals, so ∀t we have

st ∼ N
(
θ, σ2

t

)
or

st = ∅

Exogenous signals are all drawn independently. In most of the applications we

consider, there will either be only one informative exogenous signal, or informative

signals will be iid, but in a few cases there will be changes in signal quality, and in

one noted case the player's previous actions will in�uence whether they receive an

informative signal.

2.1.1 Memory Signals

Second, there is a space of memory signals M ⊆ R with elements denoted m. We

de�ne mτ
t as the memory of the event that took place at time τ , recalled at time t.

Memory signals inform the player about past exogenous signals. The memory signals

are retrieved when the player recalls a past event. The probability of receiving a given

memory signal depends on the corresponding exogenous signal, the e�ort devoted to

preserving the memory, and how long it has been since the memory was laid down.

We assume that the memory signal mτ
t is equal to sτ plus some normal noise.

mτ
t ∼ N

(
sτ ,

g(t−τ,δ)
nτ

)
(2.1)

g(t−τ, δ) is a decay function. δ is an exogenous persistence parameter and nτ is the

amount of e�ort devoted to the memory of sτ . We refer to t− τ as the delay, because

it is the number of periods between when an event occurs and when it is recalled.

Assume g(t − τ, δ) is increasing in t − τ and decreasing in δ. Assume also that

g(t− τ, δ) goes to in�nity as t− τ goes to in�nity and g(0, δ) = 0, so variance goes to

zero as the delay goes to zero. Memory signal variance is decreasing in nτ for all t− τ ,
so more e�ort always yields a better signal. Because δ is taken as exogenous and �xed

in most of our applications, we will suppress it and refer to g(t − τ, δ) as gt−τ going
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forward.

Where needed in the applications, we use the following functional form

g(t− τ, δ) = 1
δt−τ

We also use this form in some propositions where speci�ed.

Note that the framework does not make assumptions about the inter-temporal cor-

relations between memory errors (whether mτ
t−1 − sτ is correlated with mτ

t − sτ ). Due
to the linear nature of expected discounted utility, this assumption does not matter

for the player's attention selection problem, but we do need to make a choice for sim-

ulations. In simulating the data, we introduced correlation rather than drawing these

errors independently. We decayed memories by adding normal errors of the appropriate

variance to the previous period's memory signal, such that

mτ
t = mτ

t−1 + ετt (2.2)

where

ετt ∼ N
(

0, gt−τ−gt−1−τ
nτ

)
(2.3)

This means that errors are correlated across time. Allowing the errors to be corre-

lated over time smooths beliefs, which makes it easier to see the evolution of beliefs.12

This approach also re�ects the natural evolution of memory better than uncorrelated

errors, because memory errors are generally persistent (Mullet and Marsh, 2015).

2.1.2 The Game

The player has a sequence of utility functions, ut(at, θ, •), which depend on their action

and the state. These utilities can depend on other factors, such as the actions of

others (in the voting application) or the exogenous signal realization (in the insurance

application), but at and θ will be the most important determinants. Throughout the

game, players will select levels of costly e�ort nt devoted to preserving speci�c memories.

We refer to the vector of all nts as n, which has T − 1 dimensions in �nite games and a

variable number of dimensions in in�nite horizon games. At the end of the game, the

player receives a payo�

∑
t∈T

ut(at, θ, •)− c(n)

12Example Figure 6.3
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where c(n) is a cost that depends on how much e�ort was devoted to memories

throughout the game. Throughout the paper we will assume that c(n) is increasing in

each element. T is the set of time periods where actions are payo� relevant. In our �nite

time horizon applications, the player will take action in the �nal period, so T = {T}.
In our in�nite horizon game in Section 6, the player takes action every period, so T
includes all periods before the end game's stochastic end.

Every period t has two sub-periods. Information does not persist between the sub

periods.

Sub-period t.a Recall and Action:

1. The player receives memory signals about every past exogenous signal. Call the set

of received memory signals mt = {m1
t ,m

2
t , ...,m

t−1
t }. The probability of receiving

a particular signal mτ
t at time t regarding each previous exogenous signal sτ

depends on nτ and on the original sτ as previously discussed.

2. The player updates his prior based on signals received this period, using Bayes'

Theorem to generate a posterior about the state of the world, γ(mt,nt, π) ∈
∆(Θ). Here nt = {n1, n2, ..., nt−1} is the history of memory e�orts. Note past

nτ s are deduced in equilibrium from the rules of the game rather than freely

remembered, so they cannot be used to send signals.

3. The player chooses an action, at.

Sub-period t.b Memory Encoding:

1. The player receives an exogenous signal about the state of the world, st, and

stores it. Note that sts are not necessarily produced by the same signal generating

process every period.

2. The player selects a costly e�ort level, nt, which determines how well this period's

exogenous signal, st, will be remembered in future periods by in�uencing the

quality of future memory signals.

The order of the sub-periods is generally unimportant, although reversing the order

would not make sense with the insurance application, because it does not make sense

to buy insurance for a disaster after it has occurred.

Note that players do not remember past actions in our model and only recall past

exogenous signals through memory signals. Signal precision is deduced in equilibrium.

Only the game rules are freely remembered at all times. This prevents players from

potentially abusing actions to send signals to their future selves. A more complex
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model might allow for actions to also be remembered with decay, but this would not

add signi�cant insight.

Each period the player chooses at and nt optimally. The action, at, is chosen to

maximize the player's expected payo� for the current period given the player's posterior

beliefs after receiving his memory signals. Formally,

at ∈ arg max
a
E(ut(a, θ)|γ(mt,nt, π)) (2.4)

Memory e�ort, nt, is chosen to maximize the player's expected payo� stream net of

e�ort costs, conditional on the current history of memory e�orts. Formally,

nt ∈ arg max
n

E

(∑
t∈T

ut(at, θ, •)− c(n)|n,nt−1

)
(2.5)

In all games we assume that there is common knowledge of rationality and memory

decay mechanisms. A strategy in this game is vector of memory e�orts n and a mapping

from received memories mt signals to actions at for each non-trivial period. For our

solution concept we use subgame perfect equilibrium (SPE). In most cases this coincides

with basic Nash Equilibrium (NE).

2.2 Discussion of Framework

There are several features of this framework that deserve discussion. The state of the

world is kept static in order to isolate decay as a source of recency. In an environment

with a dynamic state, it is optimal to weight more recent information more. Arguably,

this is not a recency e�ect since information is being used optimally.

Due to the normality of signals, all realizations of st for a given period are equally

informative and are therefore given equal e�ort. However, if information could bleed

over between sub-periods the player might be able to deduce how accurate of a realiza-

tion st is through their memory signals, which could lead them to change their e�ort

allocation. While this could lead to interesting e�ects like con�rmation bias, it impacts

tractability, and similar mechanisms are already covered by Wilson (2014).

Players are assumed to remember speci�c past events rather than summary statistics

or beliefs, which may seem ine�cient. Neuro-scienti�c evidence suggests that individ-

uals more often store memories of past events separately and in whole, rather than

remembering only summaries of past events. d'Acremont et al. (2013) �nd evidence

that there are distinct regions encoding prior beliefs and memories of past events which

both activate when forming beliefs. Shadlen and Shohamy (2016) also �nd evidence
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that individuals form posterior beliefs and make decisions by sampling their memories

rather than by accessing some stored belief distribution.

The episodic nature of memory storage helps explain a number of cognitive e�ects.

For example there is the peak-end e�ect described by Kahneman and Tversky (2000)

where people tend to judge experiences based on the most intense part and most recent

part rather than the average. This would not be possible in a memory framework

which stored updated belief distributions.13 Ratcli� (1978) �nds that a theory where

memories are stored and retrieved episodically explains a broad range of experimental

data. Similarly, Murty et al. (2016) �nd that subjects who failed to form episodic

memories associating lottery choices with speci�c payouts did not update their behavior

and learn in an ambiguous lottery selection task.

In addition to being realistic, episodic memory can be rational. Kumaran et al.

(2016) posit that human brains use this approach, because storing episodic memories

is critical for meeting the �exible needs of human existence. By storing memories as

episodes, new information can easily be integrated and old information can easily be re-

interpreted in the face of new developments without the risk of correlation neglect. We

are not arguing that players do not recall information summaries, merely that episodic

memory often plays a critical role in determining beliefs.14

Episodic memory also has expositional advantages: by assuming episodic memory,

we shut down the optimal coding dimension of the memory problem, which examines

the way that di�erent features of the player's beliefs are stored. This component of the

memory problem is explored extensively by Kocer (2010), Drakopoulos et al. (2013),

Sanjurjo (2015), and Wilson (2014). Assuming that each informative event is stored

independently makes it easier to isolate the impacts of e�ort and decay.

There are a number of di�erent types of memory and memory systems discussed by

psychologists and neuroscientists. Squire (2004) discusses the di�erences between these

di�erent types of memory: semantic memories pertain to facts and important events

while procedural memories relate to skills and processes.15 Semantic memories can be

further subdivided into declarative memories and episodic memories. Declarative mem-

ories involve general facts like the capital of Denmark while episodic memories relate to

experienced events like what you had for breakfast. Episodic memories in particular are

helpful for the formation of beliefs about risk, utility, and complex states of the world

13This is a somewhat technical point. One could have a mechanism where individuals updated
strongly after outliers and distributions decayed, leading to something like a peak-end e�ect, but
outliers would have to be judged relative to the current distribution, so it would overweight local
peaks rather than the global peak.

14Sanjurjo (2014) discusses situations where memories are likely to be combined and summarized.
15See Schacter et al. (2009) for further discussion of di�erent memory types and systems.
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because they provide a sample of events. Our framework is speci�cally designed to rep-

resent episodic memories, although it can also reasonably cover declarative memories.

Procedural memories do not map well onto the framework.

Another important feature of the model is that the e�ort allocated to a memory

is determined entirely when the memory is �rst laid down without later opportunity

for adjustment. This is in contrast with the Azeredo da Silveira and Woodford (2019)

framework which is fully adjustable, meaning that the amount of e�ort devoted to

remembering each component of memory is re-optimized every period.

In Appendix C we show how frameworks re�ecting either of these assumptions pro-

duce counterintuitive predictions in di�erent scenarios. Non-adjustable models predict

that memory retention will not respond to increases in the expected value of previ-

ously acquired information. Fully adjustable models predict that even well memorized

information will be lost unrealistically quickly when the expected value of information

drops, including the complete instant forgetting of any information that has lost its

expected future value.

Intuition and evidence suggest a somewhat richer model where, after memorization

e�ort has been expended, decay can be further slowed but not generally worsened. Most

memorized information does not require constant e�ort or attention to maintain, but

regularly rehearsing information will make memories last much longer.

However, this more complex model is not required in the settings we examine,

because the expected value of information does not change, leaving us to choose pri-

marily based on expositional considerations. In fact, as we discuss in Appendix C,

the adjustable memory e�ort selection problem and the non-adjustable memory e�ort

selection problem are essentially identical in many of the scenarios we discuss.16 We

use a non-adjustable framework for greater tractability and notational simplicity.

The normality of signals is assumed solely for tractability in the case of multiple

signals. Even simple environments like Bernouli signals and binary actions become

intractable with only a few signals. Generally normality is not as important in single

signal cases, but the assumption is maintained there for consistency.

Note that the prior does not decay like memories do in this model. This can be

thought of as representing a default belief state which a person tends to return to.

For example, an optimistic person might default to a position that the person they are

talking to has good intentions. However, in most cases discussed the prior is chosen as a

16Note that this is not always true more generally. In particular the adjustable model allows players
to change their e�ort in response to di�erent signal realizations when these realizations have di�erent
informational value as is often the case in less symmetric setups. Whether this responsiveness is more
realistic is unclear and likely situation dependent.
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position of no information in as far as such a thing is possible in a Bayesian framework.

Throughout the paper, we often assume that the cost of memory e�ort is convex.

We justify the use of cost convexity on the idea that a person has a wide range of

possible uses for their e�ort. When they reallocate their e�ort to memory the player

should generally �rst reallocate the e�ort being spent on lower return operations. In

this way the marginal cost of e�ort should be increasing as e�ort increases. It may be

that the function is not truly perfectly convex but is instead a step function which is

approximately convex, but this should not dramatically impact results. If costs are not

convex, the results may still hold as long as the bene�ts of information are su�ciently

concave.

3 General Results

Before exploring the economic applications of the framework, we �rst present some

general results from the model. These results are organized based on the types of

environments where they apply starting from the simplest. Major results are labeled

as propositions while minor results are included as remarks or corollaries.

3.1 One Signal One Action

We begin by considering the simplest environment with only one exogenous signal and

one choice. Say that one exogenous signal st arrives at time t, T ={T}, and uT (aT , θ, •)
depends only on aT and θ. Because we are only considering one exogenous signal to

begin, only one period's memory e�ort will be potentially greater than zero. As such

we say c(n) = c(nt). We refer to optimal nts as n
∗
t . We call this the One Signal One

Action (OSOA) environment.

For the �rst result, we need the following de�nition.

De�nition 1. The strong set order ≥SSO, is de�ned such that if A ≥SSO B, then

∀a ∈ A, b ∈ B, max{a, b} ∈ A and min{a, b} ∈ B.

This says that all elements of A not in B are greater than all elements of B and all

elements of B not in A are less than all elements of A. Given these preliminaries, we

have the following result.

Proposition 1. In the OSOA environment, if c(nt) is convex, then the optimal E(uT (aT , θ))

is decreasing in the delay T − t in a strong set order sense.
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See Appendix A.1 for proof. Here we use a set order because there might be multiple

optimal performance levels in some cases. Due to the presence of decay, adding a delay

between information and action (stimulus and response in psychology) will decrease

performance. Intuitively, the e�ort selection problem can be rewritten as a precision

selection problem with a cost of precision that depends on T − t. Under the given

conditions, that cost has increasing di�erences in precision and delay, so monotone

comparative statics gives this result.

Note that this proposition does not preclude longer delay leading to greater e�ort

as long as the greater e�ort is not su�cient to lead to higher performance. We will

show a non-monotone relationship between e�ort and delay in Section 5. Also, this

proposition does not have a rational memory analog due to its dynamic nature.

We will refer to the quantity E(uT (aT , θ)) as a player's gross expected utility since

it does not include cost. Note that a player's gross expected utility is a function

of memory e�ort and delay in this setup. This proposition tells us that under cost

convexity, increasing the delay between information exposure and the resulting decision

will decrease the player's performance in making that decision. This is intuitive, as

longer delay means more opportunity to forget and more e�ort needed to e�ectively

preserve a memory.

Rationality means that e�ort will also respond to incentive level.

Remark 1. In the OSOA environment, if uT (aT , θ) = r × f(aT , θ), where r ≥ 0, and

f(•) is an arbitrary function then n∗t is weakly increasing in r.

See Appendix A.2 for proof. Increasing the incentive level leads to an increase in

e�ort and a resulting increase in E(f(aT , θ)). This result will be unsurprising to those

familiar with the rational inattention literature, because it is a direct analog of NIAC

condition from Caplin and Dean (2015). The single exogenous signal, single action

framework is isomorphic to a rational attention problem if the delay is held �xed.

Unlike Proposition 1, this result does guarantee a monotonicity in e�ort.

Similarly, when the prior is near degenerate, there is no reason to devote e�ort to

remembering signals.

Remark 2. In the OSOA environment, let uT (aT , θ) be continuous and E(uT (aT , θ)|nt)
be concave in nt. Let c

′(0) = 0, c(nt) be convex and π = (1− λ)π′ + λπθ′ where πθ′ is

a distribution with all its mass on θ′. Then as λ→ 1, n∗t → 0.

See Appendix A.3 for proof. This result can also be applied to attention prob-

lems. In the one signal, one action framework, only changing the delay allows for the

identi�cation of imperfect memory separate from imperfect attention.
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3.2 Many Signals One Action

We now consider an environment with multiple exogenous signals but still only one

choice. Say that an exogenous signal arrives in each of some subset of time periods,

T ={T}, and uT (aT , θ, •) depends only on aT and θ. We call this the Multiple Signals

One Action (MSOA) environment.

The �rst proposition in this section shows how more recent events are remembered

with greater precision and are therefore given more weight. De�ne hTt =
(
σ2
t + gT−t

nt

)−1

as the precision of the memory signal mt
T as a signal of θ. Note that h has an inverted

scripting convention from m. This is done to keep the notation in line with other

sections while minimizing the overall number of potentially confusing superscripts in

the paper.

This is how the recency e�ect manifests in our model.

Proposition 2. In the MSOA environment, if i.i.d. exogenous signals arrive every

period from 1 till T −1, and c(n) is Schur-Convex17 then the player will pick a sequence

of hTt s that is increasing in t.

For proof, see Appendix A.4. This result does not have an attention analogue.

Note that receiving several normal signals with the same mean is informationally

equivalent to receiving one normal signal equal to the precision weighted average of the

component signals.

MT =
∑T−1
t=1 htmtT∑T−1
t=1 ht

=
∑T−1
t=1 htst∑T−1
t=1 ht

+ ε

De�neMT as the composite signal. Here ε is some mean 0 normal noise. Note all

symmetric convex functions are Schur-Convex (Roberts and Varberg, 1973).

Exogenous signals that are more precisely remembered are given greater weight in

the composite signal and therefore have a higher impact on decision making. If newer

exogenous signals are recalled with higher precision, they will be given more weight,

hence recency.

If we put more structure on the problem, we can get a speci�c form for the sequence

of precisions.

De�ne total precision of memory signals HT =
∑T

τ=1 h
T
t .

Proposition 3. In the MSOA environment, if i.i.d. exogenous signals arrive every

period from 1 till T − 1, and c(n) is a strictly convex di�erentiable function of
∑
nt,

and E(uT (aT , θ)|HT ) is di�erentiable with respect to HT then

17Roberts and Varberg (1973)
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hTt = max
(

1
σ2 (1− z√gT−t) , 0

)
where z is a �xed value that does not change with t.

For proof and an expression for z see Appendix A.5. This result does not have an

attention analogue.

Note that as t increases, gT−t decreases and ht increases. This means memories of

more recent signals have a higher precision, which in turn gives them a greater weight

when determining posterior beliefs. This is how the recency e�ect manifests in this

model. Exogenous signals that are su�ciently old receive no memory e�ort and are

therefore immediately forgotten and have 0 precision.

It is interesting to note that in our formulation, the relationship between precision

and time is �xed for a given z. While the number of players and c(•) can in�uence the

amount of e�ort the players devote to memory, they do not a�ect the distribution of

that attention across memories.18 Many commonly used utility functions will lead to

expected utility being di�erentiable with respect to HT . For example, the setting in

Section 5 and the quadratic loss utility function both satisfy this requirement.

The next proposition shows how giving players more time to gather information will

always weakly improve performance.

Proposition 4. In the MSOA environment, if i.i.d. exogenous signals arrive every

period from 1 till T − 1, , and c(n) = f (
∑
g(nt)) with f(•) and g(•) increasing and

convex functions, then E(uT (aT , θ)) is weakly increasing in T .

For proof see Appendix A.6. This result requires a bit more structure than one

might expect, because while it is straightforward that increasing T makes it cheaper to

achieve any given precision, it is not trivial to demonstrate that the e�ect is stronger

for higher precisions as the proposition, which is required to guarantee the result. This

Proposition does have a rational attention analogue, since more exposures give more

information to learn.

As we discuss later in Section 5, more time will always weakly improve performance,

but the gains can rapidly drop o� after a certain length of time. In the Section 5

example, it is possible to reach a point where additional time periods provide no bene�t,

because it is ine�cient to give any attention to memories of events that are su�ciently

far back.

18In setups without normal signals, this will not generally be the case.
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The �nal result for this environment says that, if decay is not too signi�cant, the

more accurate exogenous signal will receive more memory e�ort. This is fairly intuitive,

since remembering more informative events should be more useful.

Remark 3. In the MSOA environment,if c(n) is symmetric and δ is su�ciently close to

1, then if exogenous signals arrive in period t and t′ with standard deviations σt and

σt′ such that σt′ > σt, the optimal memory e�orts satisfy n∗t ≥ n∗t′ .

For proof see Appendix A.7. This result says that, all else being equal, the player

will generally devote more e�ort to remembering more informative exogenous signals.

This result has a rational attention analogue: more e�ort will be spent in attending to

more informative signals.

Note that the inequality is often strict here including when δ = 1, so it will also

often be the case that h∗t ≥ h∗t′ for δ su�ciently large. Importantly, this shows us

that the recency e�ect is not always dominant. When decay is low and signals are

heterogeneous, signal quality may be more important than signal timing.

3.3 Multiple Signals Multiple Actions

Finally we look at the dynamic programming scenario. In this environment there is

no set end; instead the game continues with probability β. Exogenous signals are

i.i.d. with variance σ2 and arrive every period. Utility is the same every period.

Assume c(n) =
∑
c(nt) in order to deal with n having a potentially variable number

of dimensions. This de�nes the Dynamic Programming (DP) environment.

In the DP environment we can formulate the consumer's memory e�ort selection

problem as a dynamic programming problem:

max
{n1,n2,...}

∞∑
t=1

βt−1 (E(u|nt−1)− c(nt)) (3.1)

Where nt = (nt−1, nt) and n0 is a 0 dimensional vector. If we assume a convenient

functional form for gt we can guarantee convergence to a steady state

Proposition 5. In the RDP environment, if E(u(at, θ, •)|Ht) is di�erential and concave

in Ht and gt = 1
δt
, then Ht converges to a steady state de�ned by the solution, H̄, to

u′(H) =
(

1
δβ
− 1
)
c′
((

1
δ
− 1
)
H
)

If c(•) and is convex, we can interpret this result cleanly. The LHS is decreasing in

H and the RHS is increasing in H. Increasing δ or β decreases the RHS for a given H
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meaning H̄ increases. This makes sense, since increasing the future value of information

increases its overall value and therefore the amount gathered. A higher decay parameter

means slower decay, increasing the future usefulness and value of information gathered

now. A higher discount rate will also increase the future value of information directly.

It is natural to ask whether nt and Ht converge given other decay functions. The

answer is yes, but some simplifying assumptions must be made to avoid in�nite di-

mensional state space. For the sake of space, we do not cover this consideration in

detail.

3.4 Summary Tables

Major Results Table

# Description
Attention

Analog

One Signal One Action (OSOA) Environment

1 Performance in memory tasks decreases with delay No

Multiple Signals One Action (MSOA) Environment

2 Players will weight more recent events more heavily No

3 Gives a functional form to the weighting No

4 When players have more periods to gather information performance improves Yes

Multiple Signals Multiple Actions (MSMA) Environment

5 Convergence to steady state No

Minor Results Table

# Description
Attention

Analog

One Signal One Action (OSOA) Environment

1 E�ort in memory tasks increases with incentive Yes

2 If priors are near degenerate, memory e�ort approaches 0 Yes

Multiple Signals One Action (MSOA) Environment

3 When decay is low, more e�ort is spent remembering more informative events Yes

4 Solved Examples

In this section we assume a convenient functional form for utility and costs and use it

to �nd closed form solutions in the various environments discussed above. In the case
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of the MSMA framework, a closed form has not been found, but we do characterize the

solution.

For convenient forms we assume ut(at, θ) = −(at − θ)2 and c(nt) = κ
∑
n2
t . This

utility function has the useful property that E(ut(at, θ)|Ht) = − 1
Ht
.

We begin with the OSOA setting

Corollary 1. Assuming the convenient functional forms, in the OSOA the optimal

memory e�ort n∗ =
(gT−t

2κ

)1/3
and the optimal gross expected utility is given by

−
((

2g2
T−tκ

)1/3
+ σ2

)
.

For proof see Appendix B.1. Players put in more e�ort when decay is worse and

when costs are low.

Next we look at the MSOA setting with an additional assumption on exogenous

signal variance to make results more readable.

Corollary 2. Assuming the convenient functional forms and σ2 = 0, in the MSOA the

optimal memory e�ort n∗t = 1

(G22κ)1/3gT−t
and the optimal gross expected utility is given

by −
(

2κ
G

)1/3
where G =

∑T−1
t=1

1
g2t
.

For proof see Appendix B.2. One interesting result is that the expected utility

loss from inaccurate guessing only goes to 0 as T goes to in�nity if G is unbounded.

This means that performance will be asymptotically imperfect for many natural decay

functions.

Corollary 3. Assuming the convenient functional forms, σ2 = 0, c(nt) = κn2
t , gt =

1
δt
, in the MSMA the optimal solution to the resulting dynamic programming problem

converges to a unique steady state H̄ =
(

2κ
(

1
δ
− 1
) (

1
δβ
− 1
))−1/3

.

For proof see Appendix B.3. To our knowledge this di�erence equation does not

have a known closed form solution, but it is amendable to linear approximation, and we

can construct a �ow �eld to graphically analyze the solution. The di�erence equation

and the evolution of precision give us the following relationships

∆Ht = (δ − 1)Ht + δnt

∆nt =
(

1
δβ
− 1
)
nt − 1

2κ(δHt+δnt)2

(4.1)

Figure 4.1 shows the result. Note that the true solution will approach the stable

point along the saddle path from the upper left, since there is no incentive to overshoot

the steady state Ht when costs are non-concave. If costs were linear, there would be one
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Figure 4.1: Flow �eld for equations 4.1 with δ = β = 0.8 and κ = 1.

period of extremely high nt followed by steady state nt forever. The convexity of costs

incentivizes the player to spread out the above-steady-state nt over multiple periods.

Note that if we use the cost function c(nt) = κnt instead, the dynamics become

trivial with Ht immediately jumping to its steady state.

5 Voting and The Recency E�ect

In court cases, the jurors must remember evidence over the course of a trial in order

to reach a verdict. Often, voters seem to display a recency e�ect whereby more recent

events and signals have disproportionate importance in determining voting behavior.

Similarly, in most political elections, an individual must collate information gathered

over a campaign season in order to make an informed decision about how to vote.

There is substantial evidence from the social psychology literature that the recency

e�ect plays a strong role in jury behavior with evidence presented more recently hav-

ing a stronger impact on jury voting (Kerr and Jung, 2018). Furthermore, there is

evidence that this recency bias is mediated by how well speci�c pieces of evidence are

remembered, lending credence to the forgetting hypothesis (Costabile and Klein, 2008).

For political elections, it is commonly noted that voters respond much more to events

like scandals and recessions that appear near an election than they do to events that
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occur earlier in the election cycle (Healy and Lenz, 2013; Pereira and Waterbury, 2019).

While it is somewhat di�cult to precisely measure the recency e�ect in real voting

behavior due to the subjective nature of exogenous signal quality in the real world, the

recency e�ect has been found in voting games in the lab (Invernizzi, 2020). There is

also a spike in the e�cacy of voter mobilization e�orts immediately before elections,

with earlier voter mobilization being signi�cantly less e�ective (Panagopoulos, 2011).

While primarily kept simple to highlight the impact of memory, the model can

be applied directly to grand juries or demographically similar subsets of swing voters.

Grand juries are generally majority rule in the US, and we expect them to have aligned

preferences and unbiased priors. In elections, many individuals will eventually be or

become con�dent enough in their opinion of a candidate that they stop gathering new

information. This can also happen in juries but is likely less common due to less

biased initial states. At this point they have essentially entered an absorbing state

and are unlikely to be swayed, but swing voters do not enter such states by de�nition.

Demographically di�erent voters may have poorly aligned interests, but similar voters

are more likely to have similar interests.

5.1 Voting Game Model

In this section, we consider what happens when voters must aggregate information over

multiple time periods in order to make a decision at a later time. We use our model to

make quanti�able predictions about the recency e�ect, welfare, and voter performance.

The model is based on a very simple election framework. There is a set of J ex ante

identical players indexed j ∈ {1, 2, 3, ..., J} who will vote in an election. There are

T − 1 evidence gathering periods indexed t ∈ {1, 2, 3, ..., T − 1} and all players must

cast their votes during period T , so T = {T}. There are only two choices, 1 and −1,

and all players have identical preferences, so one option is better than the other for the

electorate. When all players have cast their votes, the choice with the majority of votes

is implemented. Assume J is odd and abstention is impossible, so no tie breaking is

needed. We normalize payo�s such that players receive a payo� of 1 if the good option

is selected and 0 otherwise.

The underlying state of the world θ ∈ {−1, 1} represents which option is better. If

θ = 1, then players receive the payo� if option 1 is implemented, and if θ = −1 then

they receive a payo� if −1 is implemented. Both states are equally probable a priori.

In each information gathering period, each player receives a private signal about the

state of the world. The exogenous signals are i.i.d. across players as well as time.

Note that each player has their own n and mT , so we could index these by j.
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However, we will be examining this problem from the point of view of an individual

player. As such we suppress dependence on j to avoid awkward triple indices.

Before continuing we need to introduce a piece of voting terminology.

De�nition 2. We say a player votes sincerely if the voter always chooses whichever

option maximizes their expected payo� given their posterior after updating their beliefs

based on their own private signals. In our environment this means

aT ∈ arg max γ(mT ,nT , π) (5.1)

Critically, the beliefs which de�ne sincere voting are not conditioned on pivotality.

This is the standard de�nition used in the voting literature (Austen-Smith and Banks,

1996).

We also must de�ne one additional piece of game terminology.

De�nition 3. A symmetric responsive equilibrium is an equilibrium in which all players

adopt the same strategy and player actions depend on signals in a non-trivial way.

This de�nition eliminates pathological and trivial equilibria like the one where all

players always choose aT = 1.

5.2 Perfect Learning Benchmark

The following Lemma is useful when establishing benchmarks for comparison to the

rational memory model.

Lemma 1. In our voting game, if all players receive the same distribution of memory

signals, there exists a symmetric responsive equilibrium in which each player will vote

sincerely.

For proof see Appendix A.9.

We begin by considering the perfect memory case, where all memory signals have

zero variance, as one benchmark. Because all of the signals are independently and

identically normally distributed, in the symmetric responsive equilibrium the players

will select option 1 if the average of their signals is above 0 and −1 if it is below. Note

that all of the signals in this benchmark have the same weight, because they all have

the same variance, σ2. This means that there is no recency e�ect, since there is no loss

of memory �delity over time.

The average of the T normal signals a player receives is distributed N
(
θ, σ

2

T

)
.

The only task that agents must perform in this game is to infer the state based on
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their signals and then vote accordingly. Therefore, under perfect memory, a player's

probability of voting correctly is 1−Φ
(
−
√
T

σ

)
. The probability of the majority selecting

the correct option is 1−B
(
J−1

2
, J, 1− Φ

(
−
√
T

σ

))
, where B is the binomial cumulative

distribution function, and J is the number of players. Note that in this benchmark

more players always lead to a higher probability of the good outcome being realized, in

accordance with the Condorcet Jury Theorem.

5.3 Solution

Now consider what happens when we add rational memory and decay. Assume that the

cost of memory e�ort c(n) is continuous, convex, increasing, and satis�es the Inada-like

conditions d
dnt
c(0) = 0 and limnt→∞

d
dnt
c(n) =∞.

Before we discuss the recency e�ect for voters in this game, it is important to

establish that a symmetric responsive equilibrium exists.

Proposition 6. There exists an equilibrium of the voting game with optimizing memory

in which all players select the same n's and vote sincerely.

For proof see Appendix A.10.

De�ne ht =
(
σ2 + gT−t

nt

)−1

as the precision of memory signal mt
T , as a signal on

the state θ. Note that this means ht incorporates the exogenous variance σ
2. We can

formally represent the recency e�ect through the following proposition.

Corollary 4. If c(n) is a function of
∑
nt, optimal precision in equilibrium takes the

form given by Proposition 2.

For proof see Appendix A.11. Now we use an example to show how this recency

can manifest. Figure 5.1 shows how the optimal e�ort devoted to the memory of

the current period changes over the campaign season, as well as the precision of each

resulting memory signal. We call the relationship between the time period and the

optimal precision the precision curve. The �gure demonstrates a pronounced recency

e�ect, with signals that are closer to voting time having much higher precisions and

hence a larger impact on results. Any event that occurs prior to around t = 20 has no

impact.

There is no recency e�ect in the perfect memory benchmark, but we can also com-

pare our results to another benchmark in which players devote the same e�ort to re-

membering each memory. Given �xed memory e�ort we have

ht = n̄
σ2n̄+gT−t
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Figure 5.1: Selected nt (left) and resulting memory signal precision (right) for a rational
memory voter and an exogenous memory voter. Parameters nT−1 = 100, T = 50,
σ = 0.04, δ = 0.75. Note that the speci�c cost function is irrelevant, since any cost
function which induces the same nT−1 will generate the same graph.

where n̄ is some �xed level of e�ort. For comparison, Figure 5.1 also includes a

�xed nt = n̄ exogenous memory benchmark (set at n̄ = 52.4, the mean from the ra-

tional memory solution). Rational memory leads to higher e�ort and higher precision

for the newer memories, while older memories have lower precision. The total precision

achieved by the rational memory is higher than that achieved by exogenous memory

as expected. Thus, rational memory can mitigate the losses caused by imperfect mem-

ory, but it can actually increase the intensity of the recency e�ect beyond the purely

mechanical e�ect.

From Corollary 4 we know that only two parameters, σ and δ, impact the distribu-

tion of e�ort across memories for a given z. Therefore only these parameters impact the

severity of the recency e�ect. Changing δ can be thought of as essentially changing the

units of the time axis. Lower δ compresses the time axis by speeding up decay, while

higher δ stretches out the time axis by slowing it. The e�ect of σ is somewhat more

interesting. Higher σ reduces the slope of the precision curve and therefore reduces the

intensity of the recency e�ect. Recall that σ governs the variance of exogenous signals

and therefore provides a bound on the maximum achievable precision for each memory

signal.

When σ is higher, the bound on precision is lower, guaranteeing that returns for
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memory e�ort devoted to a speci�c exogenous signal diminish more rapidly. Put another

way, when exogenous signals are more accurate they are more substitutable, so later

signals get more attention. When exogenous signals are less accurate, they become less

substitutable and attention is spread more evenly. The fact that more accurate signals

are more substitutable, because they contain more similar information is a fairly general

property and does not depend strongly on the setup we use.

To develop intuition about the impact of signal precision under rational memory,

consider the extreme case of σ → 0 where all exogenous signals are perfectly informative

and therefore contain the same information; e.g., memories are perfect substitutes and
dht
dnt

= 1
gT−t

is constant. In this situation devoting bits to the most recent memory is

strictly better, because those bits have a lower chance of decaying before the voting

period. There is no reason to devote any cognitive energy to older exogenous signals,

so the recency e�ect is maximized in the rational memory framework. However, in

the �xed memory e�ort benchmark, older memories still have positive precision and

positive weight even as σ → 0.

The presence of a recency e�ect in jury and electoral systems may explain the

existence of policies which police when information can be provided to voters and jurors.

For example, electioneering laws restrict the expression of support for candidates within

some radius of polling places throughout the United States. In France campaigning and

some types of political reporting are restricted on the day of elections or preceding days.

Arguments have been made that defendants should be given the last word in closing

arguments, partially due to recency.19

For a brief discussion of manipulation using information timing, see Appendix D.

This discussion is general, but makes some reference to electoral contexts.

5.4 Deliberation Length and Number of Voters

Campaign seasons have been getting longer and more expensive in the United States

(Nichols and McChesney, 2013). It is important, then, to understand what impact

this lengthening might have on the welfare of the electorate. There is evidence that

campaign seasons educate voters (Arceneaux, 2006), so reasonably one might expect

longer campaigns to educate voters better. While causation is di�cult to establish,

there is evidence that certain jury biases may be more pronounced in shorter trials

(Lemley et al., 2013). This change in performance is consistent with our model.

From Proposition 4 we know that lengthening the campaign season or trial will

19Mitchell (2000)
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Figure 5.2: Equilibrium probability of good election outcome. δ = 0.8, σ2 = 5. Rational
framework c(n) = 0.02 ·

∑
nt (left) and �xed exogenous e�ort benchmark n = 0.1

(right).

always weakly improve the performance of the voters, but the gains can rapidly drop

o� once a certain length is reached. In fact, as shown in Figure 5.2 when lengthening

the campaign, it is possible to reach a point where additional time periods provide no

bene�t, because it is ine�cient to give any attention to memories of events that are

su�ciently far back.

The drop-o� in the marginal bene�t from longer campaigns is actually more sig-

ni�cant when the electorate is larger to the extent that when campaign seasons are

su�ciently long, having more voters can actually decrease election performance. This

result is interesting, because it contrasts with the Condorcet Jury Theorem which guar-

antees that adding people will always improve the probability of a good election out-

come. Note that the Condorcet Jury Theorem does hold in the �xed memory e�ort

benchmark, where additional players always improve electoral performance.

In our rational memory model more players lowers the probability of pivotality. The

lower probability of pivotality substantially lowers voter investment, because voters

can free ride on the memory investments of others. This, combined with the dis-

aggregation of information inherent in larger voting groups, leads to the reduction in

relative performance for larger voting bodies.

There does not appear to be a parsimonious way to express exactly when additional

players will cause a drop in equilibrium performance.
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These results suggest that, while long campaigns and trials can be costly, they at

least do not reduce system performance. Larger electorates and juries, however, might.

The fact that high stakes felony trials have more jurors is at least partially based

on the logic that larger juries will produce better results, but we have shown this is

not inherently the case. This problem could be even more pronounced for elections.

While this concept is a bit unusual, future research could explore a system where

instead of all people voting, votes are allocated to a random subset of the population

at the beginning of the campaign season. This random subset would have more voting

power and therefore more incentive to collect information and vote conscientiously.

Conceptually, modern jury selection is already based on similar logic.

6 Insurance Cycles

In this section we apply our framework to study insurance purchasing. People seem

to exhibit a strong recency e�ect when making their insurance purchasing decisions

leading to a phenomenon called insurance cycles.20 When disasters arise, individuals

increase their demand for insurance. Over time, however, they seem to forget about

past disasters and allow their insurance to lapse. This is problematic because states

(local risk) are often very stable over time, which means the recency e�ect leads to

ine�cient behavior.

While one would expect a perfect memory individual to respond to disasters and

calm periods to some degree through Bayes updating, these responses should asymp-

totically vanish as information is accrued, but this does not seem to be the case. Dumm

et al. (2020) estimate that consumers who have not experienced disasters recently un-

derestimate risk by 30% while those who have experienced disaster temporarily overes-

timate risk by 50%. This means disaster leads to a doubling of believed disaster risk.

While a direct comparison is not made, evidence suggests that recent disasters have an

e�ect on insurance demand that is less than but comparable to the impact of income

and insurance price both at the individual and state levels.21

While insurance cycles and similar e�ects have sometimes been attributed to salience

or the availability heuristic22, these explanations do not reveal why more recent mem-

ories are more available or more heavily weighted. The temporal nature of the drop-o�

in demand suggests that it may be more deeply described as a recency e�ect. In our

20Browne and Hoyt (2000); Dumm et al. (2017); Dumm et al. (2020); Kunreuther et al. (2013);
Volkman-Wise (2015)

21Browne and Hoyt (2000); Dumm et al. (2020)
22Dumm et al. (2017); Dumm et al. (2020); McCoy and Walsh, 2018
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model, recency could be considered a cause of salience with speci�c predictions and

mechanisms. Time decays both the factual and emotional content of memories. Newer

memories would be more informative factually and emotionally and therefore more

salient.23

6.1 Insurance Purchasing Model

This application uses a repeated game with a continuation probability of β, and the

player's utility depends on their actions in every period played. Exogenous signals

arrive every period which also serve as shocks to the player's income. The state is again

binary, so θ ∈ {θB, θG} for Bad and Good with θB > θG. The two underlying states are

a priori equally likely. The player has two possible actions every period, a = 1 (insure)

and a = 0 (do not insure).

The player's uninsured per period utility, u(0, st), is a static, strictly monotone

decreasing concave function of the shock he receives. We refer to the expected uninsured

utility corresponding to average shocks θB and θG as uB = E(u(0, st)|θ = θB) and

uG = E(u(0, st)|θ = θG). Shocks are normally distributed and i.i.d. with constant

variance σ2. Note that uG > uB because the shocks in state θG are smaller. For

simplicity assume that the insurer o�ers complete insurance, which guarantees that the

insuree receives a payo� u(1, •) = uk = uB+uG
2

for the insured period.

Note that due to the concavity of u(0, •), it will always be possible for a risk neutral
insurance company to o�er such a contract and pro�t on average at the prior. Since the

insurance company is insuring against both uncertainty about the state and uncertainty

about the shock size given the state, if σ2 is high enough an insurance company that

believes that the state is B with certainty could still pro�tably insure an individual to

uk on average.

Because we are dealing with a non-�nite game, we assume c(n) is a function that

can take a countable number of inputs and satis�es c(n) =
∑
c(nt).

We assume that the shock is fully observable even if insurance is purchased and that

gt = 1
δt
. As before, memory signals are distributed normally around the corresponding

sτ with a variance of 1
δtnτ

. The player does not have the ability to remember his

history of insurance purchases. This assumption does not �t well with rationality, but

it is realistic. Most people would not consult their purchase history when considering

whether to purchase insurance. Assume that c(nt) is continuous, convex, and satis�es
d
dnt
c(0) = 0 and limnt→∞

d
dnt
c(nt) =∞.

23Cooper et al. (2019)
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The player's strategy consists of an in�nite sequence of memory e�orts nt and a

mapping for each period from memory e�ort history and received set of memory signals

to insurance purchasing decisions. Due to the way in which information arrives, a player

will have no reason to change his or her chosen memory e�ort level in response to past

events. As there is no strategic interaction in this game, an equilibrium is simply an

optimal strategy for the player.

6.2 Solution

We solve by �rst considering the insurance purchasing decision. The agent will purchase

insurance as long as

uk ≥ γBuB + (1− γB)uG (6.1)

where γB is the posterior probability that θ = θB. After observing the set of memory

signals mt,

γB(mt) = e−
∑
htτ (m

τ
t −θB)2

e−
∑
htτ (m

τ
t −θB)2+e−

∑
htτ (m

τ
t −θL)2

(6.2)

Here htτ is the precision of the signal mτ
t which depends on the e�ort nτ and the

delay t− τ . The condition for the player to purchase insurance is

∑
htτm

τ
t ≥ θB+θG

2
H(nt) (6.3)

where nt is the vector of ni's up through and including the current nt and H(nt) =∑t
τ=0 h

t
τ (nτ ).

This means that the player will buy insurance with a probability of

1− Φ
((

θB+θG
2
− θ
)√

H(nt)
)

For a given nt, ex ante expected gross utility for a given period is

uB+uG
2

+ 1
4
(uG − uB)

(
2Φ
((

θH−θG
2

)√
H(nt)

)
− 1
)

We invoke Proposition 5.

Corollary 5. Ht will converge to a steady state value in the insurance purchasing game

to the value de�ned by

1
4
(uG − uB)φ

((
θH−θG

2

)√
H
)

1√
H

=
(

1
δβ
− 1
)
c′
((

1
δ
− 1
)
H
)
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Figure 6.1: Optimal H̄ and resulting ex ante expected utility by κ

For proof, see Appendix A.12. To illustrate the phenomenon of insurance cycles,

we consider an example with u(0, st) = −e2st and c(nt) = κ × n2
t . For parameters we

choose σ2 = 2, β = 0.75, θB = 2, θG = 1, δ = 0.5, L = 30.

Figure 6.1 shows how the optimal n̄ and resulting ex ante expected utility vary as

we change the cost of memory e�ort, κ.

Figure 6.2 shows how the probability of insurance purchase changes with κ in both

states. As we increase κ, the resulting drop in H̄ causes insurance buying behavior in

the high- and low-risk states to converge. This convergence does become quite slow as

it approaches the asymptote, however, due to the quadratic cost function, which makes

nt < 1 very cheap. Even small amounts of e�ort devoted to memory can allow for some

distinction between states.

In order to demonstrate the insurance cycles that motivated this analysis, we simu-

late shock and memory data with κ = 1. Figure 6.3 shows the evolution of beliefs over

time.

Players purchase insurance whenever their beliefs satisfy

γB ≥ uG−uk
uG−uB

= 0.5 (6.4)

which we represent with a dotted line in the �gure. Recall uk = uB+uG
2

.

The simulation generates pronounced insurance cycles with periods of insurance

purchase frequently linked to large shocks or �disasters,� represented by the black x's
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Figure 6.2: Insurance purchase probability by κ in di�erent states

Figure 6.3: Belief that θ = θB over time when θ = θB(left) and θ = θG (right). Red
dotted line indicates purchase threshold. Blue shading indicates times with insurance
purchase. x indicates a shock at least 1.5 standard deviations larger than the mean.
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in Figure 6.3. These insurance cycles arise under stable levels of memory investment,

meaning that they are an e�ectively permanent feature of the system.

The insurance cycles represent a large source of welfare loss for the agent, because

they will frequently purchase insurance when it is not optimal to do so (the low-risk

state) and fail to purchase insurance when doing so is optimal (the high-risk state). To

see the impact of these cycles, compare the expected utility values in Figure 6.1 to the

perfect memory expected utility of -57208.55.

Interestingly, due to concave bene�ts and convex costs of e�ort, overall memory

costs can be quite small. In the speci�cation shown in Figure 6.3, for example, the

overall cost of memory is only 2.1% of the overall gain from memory (as calculated by

subtracting the no-information expected utility from the equilibrium expected utility).

6.3 Discussion

In terms of policy, the predictions of this model provide additional support, beyond the

standard adverse selection arguments, for insurance mandates. If properly implemented

by an agency with near-perfect memory, such mandates could avoid ine�cient insurance

under-provision. The model also provides evidence that it may be e�ciency-improving

to forbid the sale of certain types of insurance. Mandates could also reduce the amount

of cognitive e�ort the average consumer spends on learning about disaster frequency,

although the direct welfare impact of this reduction may be small.

Weaker interventions such as continual information campaigns may su�ce, but such

campaigns would entail ongoing direct and attentional costs. These campaigns may also

fail to fully convey risk information as e�ectively as remembered experience.

In a real market, the insurance companies themselves would set prices optimally and

potentially respond to shocks as well, generally by changing uk. Setting uk 6= uB+uG
2

introduces local non concavities in the value of information when Ht is small, and

this prevents the use of standard analysis methods. While some recent work has been

devoted to dynamic programming problems with local non-concavity, the tools are not

yet available to make solving this type of problem a simple task (Pennanen et al., 2017).

Based on simulations, the non-concavities can lead to situations where no information

is gathered, but otherwise results should be relatively similar.

It is natural to consider how one might embed this decision theoretic model in a

more complete market environment. If insurance price dynamics contained information

about risk, the model would become extremely complex, but in several realistic scenarios

this would not be the case. As mentioned, since the insurance protects buyers against

both state based uncertainty and state conditional uncertainty, it is possible that the
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insurance company would be able to pro�tably o�er complete insurance regardless of

buyer and insurer beliefs. In such cases, insurance prices would only re�ect the insurer's

beliefs about the buyer's beliefs, since the insurance company would only care about

extracting as much money as the buyer was willing to pay. If the seller had minimal

ability to learn buyer beliefs or price discriminate, there would be little di�erence from

the decision theoretic environment of this section.

In the case where the insurance seller has perfect knowledge about buyer beliefs and

perfect price discrimination power, the result is degenerate. The seller would always

set the price such that the buyer would be indi�erent between buying and not. This

means that the utility of buying insurance is equal to the utility of not buying which is

linear in belief.

E(u(1, st)) = E(u(0, st)) = γBuB + (1− γB)uG

The buyer would then have no incentive to gather information, since it would not

in�uence actions. It would also have no impact on expected utility conditional on buying

insurance, because insurance buying utility is linear in beliefs and the expectation of

beliefs is equal to the prior.

E (γBuB + (1− γB)uG|Ht) = πBuB + (1− πB)uG∀Ht

As such the buyer would always buy insurance and never put e�ort into remembering

events.

In many types of disaster insurance, actuarial risk for an area is very stable over

time, implying that price dynamics do not contain substantial information about risk.24

In such cases changes to the price of insurance should primarily re�ect the company's

beliefs about the willingness to pay of buyers rather than underlying risk. In these cases

insurance companies would raise and lower their prices in response to disaster solely to

take advantage of demand �uctuations. It is often illegal to raise premiums on existing

home insurance customers in response to weather or natural disaster related claims,

but there is evidence that insurance companies raise rates on new customers in states

where disasters have recently occurred.25 Anecdotal evidence also suggests that �ling

car insurance claims related to earthquake damage can also raise premiums.

24Clark (2010) indicates that only one major update to USGS earthquake risk estimates has occurred
since 1974.

25Born and Viscusi (2006)
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7 Conclusion

In this paper, we propose a novel framework of rational memory with decay which

can produce a recency e�ect and other empirically validated predictions in several

contexts. In voting games, memory decay produces a pronounced recency e�ect, which

can explain the tendency for voter behavior to be excessively in�uenced by events

that occur close to elections. Our framework also can reproduce the phenomenon of

insurance cycles, where consumers demand more insurance after a disaster occurs even

in conditions where disasters are not serially correlated. We hope this framework allows

more researchers to incorporate memory decay into their work.

A number of avenues for future research present themselves. As we discuss in Ap-

pendix C, both fully adjustable and non-adjustable frameworks of rational memory

present problematic predictions in some scenarios. This suggests that developing frame-

works with partially adjustable memory may be valuable, particularly when studying

environments where the expected value of information �uctuates, such as the tech in-

dustry, where obsolescence can rapidly decrease the value of specialized knowledge.

This paper is also designed as a step towards more complete frameworks of rational

cognition in economics. By using a framework compatible with those used in the rational

inattention literature, we can potentially provide a platform for further exploration of

phenomena involving both attention and memory. This joint framework could be very

valuable for understanding the e�ect of exposure timing on memory generally and the

impact of cognitive overload on learning.
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Appendix

A Proofs

A.1 Proof of Proposition 1

Due to the way normal signals compound, from the point of view of the player in

Period T , the memory signal mt
T behaves as a single normal signal with a mean θ and

a precision

ht =
(
σ2 + gT−t

n

)−1

Because normal signals with higher precision dominate those with lower precision

in the Blackwell (1953) sense E(uT (aT , θ)|ht), we can de�ne as the player's gross ex-

pected utility as a function of precision U(ht) = E(uT (aT , θ)|ht). Say C(ht, T − t) =

c

((
1
ht
− σ2

)−1

gT−t

)
is the cost of achieving that precision given a speci�c delay. We

can rewrite the player's e�ort selection problem as a precision selection problem.

h∗t = max
ht

U(ht)− C(ht, T − t)

We want to show that optimal U(ht) is decreasing in T − t, which is equivalent to

saying h∗t is decreasing in T − t.
In order to apply Theorem 5 of Milgrom and Shannon (1994) directly, we need to

modify the problem slightly. Say h̃ = −h and for convenience rewrite T − t = T̃ . The

player's problem is then

max
h̃

U(−h̃)− C(−h̃, T̃ )

Theorem 5 of Milgrom and Shannon (1994) guarantees that the optimal h̃ will be

weakly increasing in the strong set order as long as U(−h̃) − C(−h̃, T̃ ) has increasing

di�erences in (h̃, T̃ ). This is equivalent to saying h∗t and therefore the player's gross

expected utility is decreasing in T − t. Therefore we need to show

U(−h̃)−C(−h̃, T̃ ′)−
(
U(−h̃′)− C(−h̃′, T̃ ′)

)
≥ U(−h̃)−C(−h̃, T̃ )−

(
U(−h̃′)− C(−h̃′, T̃ )

)

∀h̃ > h̃′, T̃ ′ > T̃
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This can be simpli�ed as

C(−h̃′, T̃ ′)− C(−h̃, T̃ ′) ≥ C(−h̃′, T̃ )− C(−h̃, T̃ )∀h̃ > h̃′, T̃ ′ > T̃

or

C(h′t, T̃
′)− C(ht, T̃

′) ≥ C(h′t, T̃ )− C(ht, T̃ )∀h′t < ht, T̃
′ > T̃

or

c

((
1
h′t
− σ2

)−1

gT̃ ′

)
−c
((

1
ht
− σ2

)−1

gT̃ ′

)
≥ c

((
1
h′t
− σ2

)−1

gT̃

)
−c
((

1
ht
− σ2

)−1

gT̃

)

∀h′t < ht, T̃
′ > T̃

which is true since c(•) is increasing and convex, ht, gt ≥ 0, gt is increasing in t, and(
1
h′t
− σ2

)−1

>
(

1
ht
− σ2

)−1

A.2 Proof of Remark 1

Consider two reward levels, r′ > r. Call the resulting optimal e�ort levels n∗′t and n∗t
respectively. Assume for the sake of contradiction that n∗′t < n∗t . By optimality of n∗t
we have

r × E(f(aT , θ)|n∗t )− c(n∗t ) ≥ r × E(f(aT , θ)|n∗′t )− c(n∗′t )

which we rewrite as

r × (E(f(aT , θ)|n∗t )− E(f(aT , θ)|n∗′t )) ≥ c(n∗t )− c(n∗′t )

Note that E(f(a, θ)|n∗t )−E(f(a, θ)|n∗′t ) ≥ 0 since n∗t > n∗′t and since a normal signal

with lower variance Blackwell dominates one with higher variance.26

By optimality of n∗′t we have

r′ × E(f(aT , θ)|n∗′t )− c(n∗′t ) ≥ r′ × E(f(aT , θ)|n∗t )− c(n∗t )
26Blackwell, 1953
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which we rewrite as

c(n∗t )− c(n∗′t ) ≥ r′ × (E(f(aT , θ)|n∗t )− E(f(aT , θ)|n∗′t ))

Together these imply

r × (E(f(aT , θ)|n∗t )− E(f(aT , θ)|n∗′t )) ≥ r′ × (E(f(aT , θ)|n∗t )− E(f(aT , θ)|n∗′t ))

which can only be possible if

E(f(aT , θ)|n∗t )− E(f(aT , θ)|n∗′t ) = 0

However, as established previously, we must have

E(f(aT , θ)|n∗t )− E(f(aT , θ)|n∗′t ) ≥ c(n∗t )−c(n∗′t )

r
> 0

Hence we have a contradiction.

A.3 Proof of Remark 2

This result is a fairly direct application of the theorem of the maximum. The player

chooses

n∗t ∈ max
nt

E(uT (aT , θ)|nt, π(λ))− c(nt)

s.t. nt ∈ R+

The objective function is continuous in λ and quasi-concave, so by the theorem of

the maximum n∗t (λ) is a continuous function of λ. In addition n∗(0) = 0.

A.4 Proof of Proposition 2

We prove this by contradiction. Due to the normality of signals and the prior, player

beliefs depend on the vector of precisions for memory signals arriving in period T ,

hT , only through
∑
hTt and do so in a monotone increasing fashion. Say t′ > t and

hTt > hTt′ . Note achieving these precisions requires nt = gT−th
T
t and nt′ = gT−t′h

T
t′ .

Note gT−t > gT−t′ , so nt > nt′ . One could achieve the same total precision by setting

ñt = gT−th
T
t′ and ñt′ = gT−t′h

T
t .
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Note ñt + ñt′ < nt + nt′ and nt > max (ñt, ñt′), so n �w ñ where �w denotes weak

majorization. By the de�nition of Schur-Convexity this means c(n) > c(ñ) and both

vectors produce the same total precision, contradicting the optimality of n.

A.5 Proof of Proposition 3

We begin by showing that the FOC must apply for some optimal nt. Note that

E(uT (aT , θ)) depends on h
T
t only through HT .

The �rst derivative of gross expected utility with respect to nt is

d
dHT

E(uT (aT , θ)|HT )dHT
dnt

This expression is positive, because dHT
dnt

= dht
dnt

= (σ2nt + gT−t)
−2gT−t > 0. Note

that this value is strictly positive as nt goes to 0. In addition, by inspection we can see

that as nt goes to in�nity, the derivative goes to zero, so it is asymptotically bounded.

The second derivative of utility is

d2

dH2
T
E(uT (aT , θ)|HT )

(
dht
dnt

)2

− d
dHT

E(uT (aT , θ)|HT )d
2ht
dn2
t

which is negative in every term, since
d2hTt
dn2
t

= −2σ2 (σ2nt + gT−t)
−3gT−t < 0. This

su�ces to show that any interior optimal nt must satisfy the following FOC:

d
dHT

E(uT (aT , θ)|HT ) dht
dnt

= d
dnt
c(n)

Since gross expected utility is bounded and cost grows arbitrarily, any non-interior

solution must have nt = 0.

Recall that c(n) is a function of
∑T−1

t=1 nt. This guarantees that
d
dnt
c(n) = d

dnτ
c(n)

∀t, τ . This in turn means we can �nd a relationship between any interior nts or hts by

taking the ratio of the FOCs, which gives the following result.

d
dnt
hTt = d

dnτ
hTτ

which can be written out and transformed to

nt = 1
σ2

((
nτσ

2 + gT−t
)√ gT−t

gT−τ
− gT−t

)
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Note that nτ = gT−τ
h−1
τ −σ2 , which we can substitute into the above to get

nt =
(

gT−τ
h−1
τ −σ2 + gT−τ

σ2

)√
gT−t
gT−τ
− gT−t

σ2

Rearrange and multiply by gt to get

gT−t
nt

= σ2(
1

(hTτ )−1−σ2
+1

)√
gT−τ
gT−t

−1

Then add σ2 and substitute in for ht to get

(
hTτ
)−1

= σ2

1 + 1(
1

h−1
τ −σ2 +1

)√
gT−τ
gT−t

−1


Rearrange to get

hTτ = 1
σ2

(
1− (hTτ )

−1
−σ2

((hTτ )−1−σ2+1)gT−τ
√
gT−t

)
Note that if any nts are interior, nT−1 must be as well, because if not, one could set

nT−1 equal to nt > 0 and set that nt equal to zero and improve overall total precision

without changing cost. Therefore, we can set τ = T−1 and de�ne
(hTT−1)

−1
−σ2(

(hTT−1)
−1
−σ2+1

)
g1

= z

which gives us

hTt = 1
σ2 (1− z√gT−t)

for any interior hTt . Otherwise, h
T
t = 0.

A.6 Proof of Proposition 4

We prove this by contradiction. Consider two election games which are identical except

game one ends at time T1 and game two ends at time T2. Assume T2 > T1.

Note that E(uT (aT , θ)) is a function of the total memory signal precision HT . Call

this function U(H).

Call the total precision of players in the game ending at T1, H
∗
1 and the total

precision selected by players in the game ending at time T2, H
∗
2 .

Assume for a contradiction that the probability of a good election is higher in game

one. This implies H∗1 > H∗2 . The individual's total precision selection problem in game

i can be written as
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max
H

U(H)− C(H,T )

where C(H,T ) is the cost incurred for getting a total memory precision of H given

a T period campaign season. Note that C(H,T ) is decreasing in T because any vector

of nt's that is feasible when T is smaller is also feasible when T is larger for at most

the same cost.

We need to prove one lemma on C(H,T ) before continuing the proof.

Lemma 2. C(H,T ) has decreasing di�erences in (H,T ).

Proof. We want to show that

C(H2, T2)− C(H1, T2) < C(H1, T1)− C(H1, T1)

∀H2 > H1, T2 > T1.

We can write C(H,T ) as

C(H,T ) = min
h
c (n (h))

s.t.
T∑
t=1

ht ≥ H

where h is the vector of ht's and the tth element of n (h) is given by

nt(ht) = gt

(
1
ht
− σ2

)−1

We also de�ne the reverse transformation so the tth element of h(n) is given by

ht(nt) =
(
gt
nt

+ σ2
)−1

Finally de�ne hi(Tj) optimal vector of precision for achieving Hi given the game

length Tj with a corresponding e�ort vector ni(Tj).

We want to show

c(h1(T2))− c(h1(T1)) ≥ c(h2(T2))− c(h2(T1))

We begin by showing h2 > h1 element-wise. We do this by looking at the constrained

optimization problem which determines h in any given problem

min
n
f
(∑

g (ni)
)
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s.t.
∑

h(n) = Hi

which has a Lagrangian

f
(∑

g (ni)
)
− λ(H(n)−H)

Take the FOC w.r.t. ni to get

g′(ni)/
dH
dni

= λ/f ′(G)

for all i where it is possible. For all other i, ni = 0. Note the LHS is increasing

in ni and does not depend on T and the RHS is identical for all i in a given problem.

This going from H1 to H2 increases λ/f
′(G), and therefore increases all ni. Therefore,

h2 > h1 element-wise.

Next de�ne∆h1 = h1(T2)− h1(T1).

Note that ∆h1 has two components, ∆h1[1;T1] ≤ 0 and ∆h1[T1 + 1;T2] ≥ 0. This

comes from the previous result, since if ∆h1[1;T1] > 0 in any element it must also be

greater in every element which contradicts the fact that
∑

∆h1 = 0.

Further de�ne h′ = h2(T1) + ∆h(T1)

By optimality c(h′) > c(h2(T2)), so

c(h2(T2))− c(h1(T2)) ≤ c(h′)− c(h1(T2))

Therefore it su�ces to show

c(h1(T2))− c(h1(T1)) ≥ c(h′)− c(h2(T1))

De�ne G(h) =
∑
g(n(hi)).

Note that n(hi) is also a convex increasing function, soG(•) is increasing and convex.
By the convexity of f it is su�cient to show

G(h1(T1)) ≤ G(h2(T1))

which is true trivially

and

G(h1(T1))−G(h1(T2)) ≤ G(h2(T1))−G(h′)

Note that components ∆h1[T1 + 1;T2] contribute equally to both sides of the equa-
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tion while ∆h1[1;T1] contributes more to the RHS since g(•) is convex and h2(T1) ≥
h1(T1) element-wise.

By optimality we must have

U(H∗1 )− C(H∗1 , T1) ≥ U(H∗2 )− C(H∗2 , T1)

and

U(H∗2 )− C(H∗2 , T2) ≥ U(H∗1 )− C(H∗1 , T2)

Add together to get

U(H∗1 )− C(H∗1 , T1) + U(H∗2 )− C(H∗2 , T2)

≥ U(H∗2 )− C(H∗2 , T1) + U(H∗1 )− C(H∗1 , T2)

And rearrange to get

C(H∗2 , T1)− C(H∗1 , T1) ≥ C(H∗2 , T2)− C(H∗1 , T2)

Which, given T2 > T1 only satis�es Lemma 2 if H∗2 ≥ H∗1 .

A.7 Proof of Remark3

We prove this by contradiction. Say that the optimal n∗t′ > n∗t . Due to the normality

of signals and the prior, player beliefs depend on hTonly through
∑
hTt and do so in a

monotone increasing fashion. By symmetry, we know we can switch the memory e�ort

levels without changing the cost of memory.

Therefore all that remains to be shown is that, given a su�ciently small δ, switching

memory e�orts would weakly increase hTt +hTt′ . We can show this by proving d
dn
hTt (n) ≥

d
dn
hTt′(n).

Note that

d
dnt
hTt = d

dnt

(
σt + gT−t

n∗t

)−1

= −
(
σt + gT−t

n∗t

)−2
d
dnt

gT−t
n∗t

−
(
σt + gT−t

n∗t

)−2
d
dnt

gT−t
n∗t

= −
(
σt + gT−t

n∗t

)−2

− gT−t

n∗
2
t
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=
(

n∗t
σtn∗t+gT−t

)2
gT−t

n∗
2
t

= gT−t

(
1

σtn∗t+gT−t

)2

which is decreasing in σt and continuous in gT−t∀gT−t > 0.

A.8 Proof of Proposition 5

To prove convergence, we need Assumptions 4.3, 4.4, 4.7, and 4.8 of Stokey and Lucas

(1989).

Assumption 4.3 requires that nt be bounded. De�ne n−τt as the history of mem-

ory e�orts at time t with nτ omitted. Say ū(t,n−τt ) = limnτ→∞E(u|n−τt , nτ ). The

marginal bene�t of nτ is bounded above by 1
1−β maxt,n−τt

(
ū(t,n−τt )− E(u|n−τt , nτ )

)
,

by monotonicity. By the continuity of E(u|nt), the quantity ū(t,n−τt ) − E(u|n−τt , nτ )

goes to 0 as nτ → ∞ for all t,n−τt . Therefore, the marginal bene�t of nτ goes to 0

as nτ → ∞. Since the marginal cost of nτ is non-decreasing and positive somewhere,

costs will eventually outstrip bene�ts. We simply assume that nt is bounded by some

n̄ beyond that point.

Since 1 ≥ E(u|nt−1) ≥ E(u|n0), we know that U(nt−1, nt) is also bounded. This

fact gives us Assumption 4.4, and Assumption 4.8 is immediate from the structure of

the Bellman Equation.

All that remains is Assumption 4.7. which requires that E(u|nt) is increasing in

all nτ and concave in nτ . Increasing comes from the fact that higher precision normal

signals Blackwell (1953) dominate lower precision ones. Concavity is a condition of the

proposition. We now move on to prove the convergence value.

Due to the chosen gt we have H(nt−1) = Ht =
∑t

τ=1 δ
t−τnτ

This has the convenient property that

Ht+1 = δHt + δnt

We can then write the Bellman Equation

v(H) = maxnt u(Ht)− c(nt) + βv(δH + δnt)

Which can be rewritten as

v(Ht) = maxHt+1 u(Ht)− c(1
δ
Ht+1 −Ht) + βv(Ht+1)

Which has a FOC

d
dHt+1

v(Ht) = −1
δ
c′(1

δ
Ht+1 −Ht) + β d

dHt+1
v(Ht+1) = 0
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Note

v(Ht+1) = u(Ht+1)− c(1
δ
Ht+2 −Ht+1) + βv(Ht+2)

So by the enveloped theorem
d

dHt+1
v(Ht+1) = u′(Ht+1) + c′(1

δ
Ht+2 −Ht+1) + 0

Which we can substitute in to get

−1
δ
c′(1

δ
Ht+1 −Ht) + βu′(Ht+1) + βc′(1

δ
Ht+2 −Ht+1) = 0

at the steady state

−1
δ
c′(1

δ
H̄ − H̄) + βu′(Ht+1) + βc′(1

δ
H̄ − H̄) = 0

u′(Ht+1) =
(

1
δβ
− 1
)
c′
((

1
δ
− 1
)
H̄
)

A.9 Proof of Lemma 1

We keep this proof short and light on formalism, because it is only a minor variation on

Theorem 1 of Austen-Smith and Banks (1996). As long as all other voters j 6= i have

incentives identical to Player i's, all other players have identically distributed signals,

the prior is uniform, and the election is majority rule, then Player i's beliefs about the

state of the world, conditional on pivotality, are also uniform. If Player i has uniform

interim beliefs conditional on pivotality, it is optimal for him or her to vote sincerely

based on his posterior.

A.10 Proof of Proposition 6

We want to show that there exists an n∗ such that, conditional on other players choosing

n∗and voting sincerely, it is optimal for a given player to choose n∗ and vote sincerely.

As established in the proof of Lemma 1, if all other players receive equally distributed

signals and vote sincerely, the prior is uniform, and the election is majority rule, then

it is optimal for a player to vote sincerely.

Given that all memory signals are independent normals, they are informationally

equivalent to one normal signal equal to the precision weighted average
∑T−1
t=1 htmTt∑T−1
t=1 ht

. Here

ht =
(
σ2 + gT−t

nt

)
−1 is the precision of signal mT

t . Recall that σ2 and gT−t are both

constants determined by the parameters of the model, while nt is memory e�ort, which

is selected by the player.
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The composite signal has a mean θ and a precision of
∑T−1

t=1 ht. Due to the symmetric

prior (conditional on pivotality), the player will pick option 1 as long as
∑T−1
t=1 htmTt∑T−1
t=1 ht

> 0.

This means that the probability of a player voting correctly is 1 − Φ(−
√∑

ht). For

notational convenience, we will sometimes write
∑T−1

t=1 ht as H. As such Player i's utility

function is given by

K
(
n−i
)
∗
(
1− P

(
n−i
))

+ P
(
n−i
) (

1− Φ
(
−
√
H(ni)

))
− c

(
ni
)

Here ni is the vector of nits chosen by Player i, and c(•) is the cost of memory

resources. Here P is the probability of pivotality, and K is the probability of the

correct choice being implemented given that the player is not pivotal. Both K and

P depend on n−i which is the vector of nt's chosen by all players other than Player

i. Note that all players other than Player i have the same memory e�orts, so we can

represent n−i with a vector that has the same number of dimensions as ni.

Therefore, to show the proposition, we simply need to show the existence of a vector

n∗ that satis�es

n∗ ∈ ϕ(n∗)

ϕ(n∗) := arg max
ni
P (n∗)

(
1− Φ

(
−
√
H(ni)

))
− c

(
ni
)

By Kakutani's Fixed Point Theorem, such an n∗ exists as long as n∗ belongs to

a non-empty, convex, compact subset of Euclidean space and ϕ(•) is closed graph,

compact valued, and convex valued for all n∗. We can easily bound n∗ in a non-empty,

convex, compact subset of Euclidean space. Simply say n̄t is some value of nt such that

c(0, 0, 0, ..., n̄t, ..., 0, 0, 0) > 1. It will never be optimal to pick nt > n̄t, because doing so

guarantees that the player would make less than zero utility while picking all zeroes will

provide more than zero. Say that n̄ = maxt n̄t. We can say WLOG that n∗ ∈ [0, n̄]T ,

which is a non-empty, convex, compact subset of Euclidean space.

To prove that ϕ(•) is closed graph, compact-valued, and convex valued for all n∗,

we need to use the theorem of the maximum.

Theorem of the maximum states that if

P (n∗)
(

1− Φ
(
−
√
H(ni)

))
− c

(
ni
)

is continuous in ni for all n∗ then ϕ(•) is non-empty, compact-valued, and upper

hemicontinuous. This would immediately guarantee ϕ(•) is closed graph as well, be-
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cause it is a correspondence between closed subsets of RT which are metric spaces.

Compact-valued and upper hemicontinuous correspondences are closed graph if they

map into a metric space. We get continuity of the expression immediately from the fact

that it is a composition of continuous functions.

To get ϕ(•) convex-valued, from the Theorem of the Maximum, we also need to

show that

P (n∗)
(

1− Φ
(
−
√
H(ni)

))
− c

(
ni
)

is quasiconcave. It su�ces to show that 1−Φ
(
−
√
H(ni)

)
is concave, since P (n∗) >

0 and c (ni) is concave. Recall that a player's probability of pivotality does not depend

on their own memory e�ort.

If H(ni) is concave and increasing in each element, then
√
H(ni) is concave and

increasing in each element, by properties of the composition of concave increasing func-

tions. This implies −
√
H(ni) is convex and decreasing. Φ(x) is convex and increasing

for x ≤ 0 and −
√
H(ni) < 0, so again by composition properties, Φ

(
−
√
H(ni)

)
is

convex, which means −Φ
(
−k
√
H(ni)

)
is concave.

Therefore, it su�ces to show that H(ni) is concave. H(ni) is concave as long as

its Hessian matrix is negative semi-de�nite. The Hessian is a diagonal matrix with

elements d2ht
dn2
t
, because all the cross derivatives are zero, so if we can show d2ht

dn2
t
≤ 0 we

are done.

dht
dnt

=
(
σ2 + gT−t

nt

)
−2 gT−t

n2
t

=
(
σ2nt + gT−t

) −2gT−t

So

d2ht
dn2
t

= −2σ2
(
σ2nt + gT−t

) −3gT−t

Note that gT−t, nt, σ
2 > 0, so

−2σ2
(
σ2nt + gT−t

) −3gT−t ≤ 0
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A.11 Proof of Corollary 4

we simply need to show that expected utility is continuous in HT . Expected utility is

given by

Pφ
(
−
√
HT

)(
1

2
√
HT

)
dht
dnt

where P is the individual player's probability of pivotality. By inspections, we can

see that this is a continuous function.

A.12 Proof of Corollary 5

We know from the proof of Proposition 4 that
√∑

hτ is concave and increasing in n.

If we can show

f(x) = uB+uG
2

+ 1
4
(uG − uB)

(
2Φ
((

θB−θG
2

)
x
)
− 1
)

is concave in x, then we will have the result from the property of compositions of

concave increasing functions. We can again ignore the constant components and focus

on

1
4
(uG − uB)

(
2Φ
((

θB−θG
2

)
x
))

which is a concave increasing function of x, because uG > uB, θB > θG and Φ(x)

is an increasing concave function of x as long as x ≥ 0. Recall that the precisions are

always weakly positive.

B Closed Form Proofs

B.1 OSOA Closed Form Proof

E(u|H(nt)) = − 1
hT (nt)

= −gT−t+ntσ
2

nt
= −

(
gT−1

nt
+ σ2

)
So the player's objective function is−

(
gT−1

nt
+ σ2

)
− κn2

t

Which has a FOC gT−1

n2
t

= 2κnt

Which we can solve for
(gT−1

κ2

)1/3
= n∗t

Plug in for gross expected utility to get −
((

2g2
T−1κ

)1/3
+ σ2

)
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B.2 MSOA Closed Form

E(u|H(nT )) = − 1
H(nT )

where H(nT ) =
∑T−1

t=1
nt
gT−t

So the objective function is − 1
H(nT )

− κ
∑T−1

t=1 n
2
t

Which has a FOC 1
H(nT )2

(
1

gT−t

)
= κnt

Take the ratio of the FOC for τ and τ ′ to get the ratio condition: nτ
nτ ′

=
gt−τ ′

gt−τ

Rewrite everything as a function of nT−1using nt = g1
gT−t

nT−1 and de�ne G =∑t−1
i=1

1
g2i

= G

Objective function can be rewritten as − 1
nT−1g1G

− κn2
T−1g

2
1G

Take the FOC 1
n2
T−1g1G

− κ2nT−1g
2
1G = 0

Solve to get(g3
1G

22κ)
−1/3

= n∗T−1

Plug into the ratio condition to get

n∗t =
(G22κ)

−1/3

gT−t

H∗ =
(
G
2κ

)1/3

Optimal Gross Expected Utility −
(

2κ
G

)1/3

B.3 MSMA Closed Form

1
δ

∆Ht =
(

1
α
− 1
)
Ht + 1

α
nt from the evolution of Ht

Sub c(•) into Proposition 5 to get

βu′(Ht+1) + 2κ1
δ
Ht − 2κ

(
1
δ2

+ β
)
Ht+1 + 2κβ 1

δ
Ht+2 = 0

or

βu′(Ht+1)− 2κ1
δ
nt + 2κβnt+1 = 0

Since αHt+1 −Ht = nt we can rewrite as

∆nt =
(

1
δβ
− 1
)
nt − 1

2κ
u′(Ht+1)

We can further sub in for Ht+1 to get

∆nt =
(

1
δβ
− 1
)
nt − 1

2κ
u′ (δHt + δnt)

Steady State solution

β
2κ
u′(H̄) =

(
1
δ
− 1
) (

1
δ
− β

)
H̄
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Now sub in for u(•)
Find the �ow �eld

0 = (δ − 1)Ht + δnt

0 =
(

1
β
− 1
)
nt − 1

2κ(δHt+δnt)2

Find the steady state

β
2κ
−1

(H)2
= (1

δ
− 1)(1

δ
− β)H

H∗ =

(
β

2κ
(

1
δ
−β
)(

1
δ
−1
)
)1/3

The quantity in the root is positive, so this has only one real solution. By the

monotonicity of the Ht evolution equation there is only one n̄ for any H̄.

C Adjustability

As discussed in Section 2.2, the framework we are using does not allow for players to

adjust their memory e�ort in response to new information about the value of their

memories (by, for example, devoting fewer neurons to a memory they have realized is

unimportant or rehearsing a memory they expect to need). On the other hand, allowing

for full adjustability could also produce unrealistic predictions such as unrealistically

quick forgetting. In this section, we construct two thought experiments, with the �rst

showing the pitfalls of leaving adjustability out of the framework, and the second show-

ing how allowing for full adjustability can lead to its own problematic predictions.

C.1 Testing Adjustability

We now construct a simple thought experiment for which our baseline framework with

in�exible memory plans generates somewhat counter intuitive predictions. Consider a

three-period game, which we will call the adjustability experiment game. We deviate

slightly from the baseline framework by saying that the state θ has two components, a

reward level r ∈ {rh, rl} with rh > rl and an action relevant component η ∈ R. The

order of play in the game goes as follows:

1. In Period 1, the player learns η and r.

2. Period 2 passes.
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3. In Period 3, the player receives a memory signal m3 about η and takes an action

a3.

After the game is complete, the player receives a reward of

u3(a3, θ) = r ∗ f(a3, η)

Assume for simplicity that once learned, r is remembered with certainty for free.

Non-Adjustable Memory: If the player has non-adjustable memory, as is the

case in the baseline framework used throughout the paper, he chooses one memory

e�ort level at the beginning of Period 1 and pays a cost

c(n1)

In the last period, he receives a memory signal

m3 = η + ε

ε ∼ N
(

0, g2
n1

)
The baseline player will not be able to adjust the precision of his memory in response

to r.

Adjustable Memory: Now consider a player who can adjust his memory e�ort.

Say the adjustable memory player selects an initial memory e�ort, n1, at the beginning

of period 1 and then selects a second memory e�ort, n2, at the beginning of Period 2

after learning η and, more importantly, r. His memory signal is then

m3 = η + ε1 + ε2

where

ε1 ∼ N
(

0, g1
n1

)

ε2 ∼ N
(

0, g1
n2

)
and he pays a cost

c̃(n1, n2)
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We use c̃(•) to di�erentiate the cost functions between frameworks. Note that c(•)
takes one argument while c̃(•) takes two.

Proposition 7. Within the adjustability experiment game, the adjustable memory player's

equilibrium satis�es

E(u(a3, η)|rh) ≥ E(u(a3, η)|rl)

while the baseline player's equilibrium satis�es

E(u(a3, η)|rh) = E(u(a3, η)|rl)

Proof. That performance is identical in the non-adjustable framework is trivial,

since the memory plan can only be conditioned on information known to the player

when he receives the signal. We will prove the remaining result by contradiction. Take

the player's choice of n1 as given, since this choice cannot be conditioned on r. In the

adjustable framework, the player in Period 2 must solve the problem

max
n2

r × E(u(a, η)|n2, n1)− c̃(n2, n1)

Conjecture that there are e�ort levels nh2 and nl2, corresponding to rh and rl respec-

tively, such that E(u(a, η)|nl2, n1) > E(u(a, η)|nh2 , n1).

By incentive compatibility we know

rl × E(f(a, η)|nl2, n1)− C̃(nl2, n1) > rl × E(f(a, η)|nh2 , n1)− c̃(nh2 , n1)

and

rh × E(f(a, η)|nh2 , n1)− c̃(nh2 , n1) > rh × E(f(a, η)|nl2, n1)− c̃(nl2, n1)

which implies

c̃(nl2, n1)− c̃(nh2 , n1) > rh × E(f(a, η)|nl2, n1)− rh × E(f(a, η)|nh2 , n1)

and

c̃(nl2, n1)− c̃(nh2 , n1) < rl × E(f(a, η)|nl2, n1)− rl × E(f(a, η)|nh2 , n1)

But if E(f(a, η)|nl2, n1) > E(f(a, η)|nh2 , n1) then
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rh ×
(
E(f(a, η)|nl2, n1)− E(f(a, η)|nh2 , n1)

)
>

rl ×
(
E(f(a, η)|nl2, n1)− E(f(a, η)|nh2 , n1)

)
is impossible, since rh > rl. This means it is impossible for both IC constraints to

hold. Thus by contradiction we have the result.

Note that this is essentially an Application of the NIAC from Caplin and Dean

(2015). As such, it can also apply to more general settings without normal signals.

In this case, fully adjustable memory leads to a more reasonable prediction, because

new information changes the expected value of old information. Learning that infor-

mation will be more or less valuable should increase or decrease a person's tendency to

remember that information.

Note that if information about r did not arrive after an e�ort level had already

been chosen, both frameworks would be e�ectively identical. To see this note that, if

no information on r is provided, the only behaviorally important feature of the cost

function in the adjustable framework is the minimum cost required to achieve any

particular precision for m3. No other features are behaviorally relevant, because a

player will never use any set of n1 and n2 to achieve their desired precision that costs

more than the minimum. If c(•) and c̃(•) produce the same minimum costs of precision

for each possible precision value, then we can rewrite both the adjustable e�ort selection

problem and the non-adjustable e�ort selection problem as the same precision selection

problem.

While it may seem like this example depends heavily on the exact timing we assume

in our framework, we can explore the same phenomenon with di�erent period timing

just by slightly altering the form of the game. If, for example, we allow the player

to choose his memory e�ort after receiving the exogenous signal in each period, then

the same counter-intuitive result can be obtained if we modify the game by having the

player learn r in period 2.

C.2 Pitfalls of Full Adjustability

Allowing for full adjustability of memory resources creates its own set of unrealistic

predictions. In particular, it predicts an extremely rapid drop-o� in memory quality

once the future value of a memory is diminished.

Consider the following thought experiment. Student 1 is told to memorize a list
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of words. In 15 minutes, he will be asked to repeat the list for $100. After another

15 minutes he is asked to do so again, but this time the prize is only $1 for success.

Student 2 is given the same list and asked to memorize it. After 15 minutes he will be

asked to repeat the list for a $1 prize with no further tests.

Who will do better on their $1 test? Intuitively, Student 1 has already spent the

memorization e�ort for the previous $100 prize, so their performance should be higher.

However, in a fully adjustable memory model, their performance will be lower. We

formalize this below.

Adjustability Pitfalls Game: First, consider a simple three period game, which

we will call the adjustability pitfalls game. For simplicity, assume the signal is fully

revealing of the state.

1. In Period 1, the player learns θ.

2. In Period 2, he receives a signal m2 and takes an action a2.

3. In Period 3, the player receives a signal m3 and takes an action a3.

After the game is complete, the player receives a reward of

r2 × u(a2, θ) + r3 × u(a3, θ)

A player with adjustable memory selects an initial memory e�ort, n1, at the begin-

ning of Period 1 and then selects a second memory e�ort, n2, at the beginning of Period

2 and pays a cost

c̃(n1, n2)

In Period 2, he receives a memory signal

m2 = θ + ε21

ε21 ∼ N
(

0, g1
n1

)
And in Period 3, he receives a memory signal

m3 = θ + ε31 + ε32

ε31 ∼ N
(

0, g2
n1

)
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ε32 ∼ N
(

0, g1
n2

)
Comparison Game: Also consider a two-period comparison game.

1. In Period 1, the player learns θ

2. In Period 2, he receives a signal m2 and takes an action ã2

After the game is complete, the player receives a reward of

r3 × u(ã2, θ)− c̃(ñ1, 0)

Note that the comparison game has the same reward level as the one associated

with the action chosen in the second period of the adjustability pitfalls game. In the

comparison game, whether the player has adjustable memory is irrelevant. He will

select memory e�ort n1 in Period 1, and in Period 2 he will receive a memory signal

m2 = η + ε21

ε21 ∼ N
(

0, g1
n1

)
Before we go on, we introduce the following de�nition.

De�nition 4. A function c(•) is symmetric if c(a, b) = c(b, a)∀a, b.

The issue with full adjustability comes from the following result.

Proposition 8. Under the adjustable memory framework, if c(•) is strictly increasing

and convex in each element, symmetric, and has increasing di�erences in (n1, n2) then

the performance in Period 2 of the comparison game will always be greater than the

performance in Period 3 of the adjustability pitfalls game (E(u(ã2, θ)) > E(u(a3, θ))).

Proof. In the adjustability pitfalls game, under the adjustable memory framework,

the player must choose n1 and n2 to maximize

r2 × U(h(n1)) + r3U(h(n1, n2))− c̃(n1, n2)

where h() is the precision of a memory signal, so

ht(n1, n2, ...nJ) =

(
t∑

j=1

gJ−j+1

nj

)−1
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In addition U(n1) = E(u(a, θ)|h(n1)) and U(n1, n2) = E(u(a, θ)|h(n1, n2)). One

necessary condition for optimality is that n2 maximizes

r3 × U(h(n1, n2))− c̃(n1, n2)

which de�nes an optimal n∗2.

In the comparison game, the player must choose ñ1to maximize

r3 × U(h(ñ1))− c̃(ñ1, 0)

Note that h2(n1, n2) = 1( g2
n1

+
g1
n2

) and h1(ñ1) = ñ1

g1
.

We de�ne C2(h, n1) = 1
r3
c̃

(
n1, g1

(
1
h
− g2

n1

)−1
)
and C1(h) = 1

r3
c̃ (g1h, 0)

so we can rewrite the second period optimand for the adjustment pitfalls game as

U(h)− C2(h, n1)

with an optimum h∗

We rewrite the optimand for the comparison game as

U(h)− C1(h)

With an optimum h̃∗

Note that it is possible to have h̃∗ which is not attainable in the adjustment pitfalls

game, in which case we have the result trivially. Assume that h̃∗ is feasibly attainable

in the adjustment pitfalls game from here on.

The fact that each selected precision is incentive compatible gives us

U(h∗)− C2(h∗, n1) ≥ U(h̃∗)− C2(h̃∗, n1)

U(h̃∗)− C1(h̃∗) ≥ U(h∗)− C1(h∗)

which sum to

−C2(h∗, n1)− C1(h̃∗) ≥ −C2(h̃∗, n1)− C1(h∗)

which we can rearrange to get

C2(h̃∗, n1)− C1(h̃∗) ≥ C2(h∗, n1)− C1(h∗)
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Substitute back in and rearrange to get

c̃

(
n1, g1

(
1
h̃∗
− g2

n1

)−1
)
− c̃

(
n1, g1

(
1
h∗
− g2

n1

)−1
)
≥ c̃

(
g1h̃

∗, 0
)
− c̃ (g1h

∗, 0)

By symmetry we have

c̃

(
g1

(
1
h̃∗
− g2

n1

)−1

, n1

)
− c̃

(
g1

(
1
h∗
− g2

n1

)−1

, n1

)
≥ c̃

(
g1h̃

∗, 0
)
− c̃ (g1h

∗, 0)

or

c̃

(
g1

(
1
h∗
− g2

n1

)−1

, n1

)
− c̃

(
g1

(
1
h̃∗
− g2

n1

)−1

, n1

)
≤ c̃ (g1h

∗, 0)− c̃
(
g1h̃

∗, 0
)

which is a necessary condition for the optimality of h∗ and h̃∗. Now for the purpose

of contradiction assume h∗ > h̃∗. By increasing di�erences we know

c̃ (g1h
∗, n1)− c̃

(
g1h̃

∗, n1

)
≥ c̃ (g1h

∗, 0)− c̃
(
g1h̃

∗, 0
)

Note that g1

(
1
h
− g2

n1

)−1

is a strictly increasing monotone function which is greater

than or equal to g1h∀h ≥ 0 and c̃ (•) is strictly increasing and convex in each element.

Therefore,

c̃

(
g1

(
1
h∗
− g2

n1

)−1

, n1

)
− c̃

(
g1

(
1
h̃∗
− g2

n1

)−1

, n1

)
> c̃ (g1h

∗, n1)− c̃
(
g1h̃

∗, n1

)
This implies

c̃

(
g1

(
1
h∗
− g2

n1

)−1

, n1

)
− c̃

(
g1

(
1
h̃∗
− g2

n1

)−1

, n1

)
> c̃ (g1h

∗, 0)− c̃
(
g1h̃

∗, 0
)

which contradicts optimality of h∗ and h̃∗.

This result seems particularly counter intuitive in situations where r2 is much larger

than r3. One would expect that giving someone a large reward to memorize a fact and

then a small reward to repeat it later would produce a better result than just o�ering
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the small reward for one recitation. Normally, the high memorization e�ort in the

�rst period would be expected to produce good memory signals in later periods even if

incentives did not remain high. Note that the non-adjustable framework does not make

a �rm prediction in this case, with the outcome depending on the relative impacts of

e�ort and time.

As we can see, both full adjustability and non-adjustability present issues. Neither

of these issues is likely to impact results earlier in the paper, however, as we do not

consider any games where the expected value of previously learned information can

change stochastically, and we do not include any problems where information value

decreases.

D Manipulation Through Timing of Information Re-

lease

In this section we show that even when memory resources are allocated rationally,

the timing of when information is released can be used to manipulate the behavior of

even fully Bayesian but forgetful individuals. There are several examples from the real

world where evidence indicates that there is the possibility of manipulating individuals

through the timing of information release or that such manipulation is already occur-

ring. Amacher and Boyes (1978) �nd evidence that legislator behavior changes over the

course of a session, with legislative actions more closely aligning with the preferences

of the constituency when an election is coming up soon. This pattern suggests that

legislators are taking advantage of the tendency of voters to forget old information in

order to boost their chance of reelection. Panagopoulos (2011) �nds that voter mobi-

lization campaigns are more e�ective closer to the date of the election, suggesting that

an agency wanting to maximize voter turnout can take advantage of the voter's ability

to remember new information more easily. Moving away from elections, Francis et al.

(1992) �nd that companies often report worse than expected earnings outside of trading

hours to minimize the impact on their stock price.

To explore this phenomenon, we embed our model in a two player manipulation. In

our model there are two agents: a Sender and a Receiver. Both Sender and Receiver

have an identical prior π over states of the world. Assume T = T , so the Receiver

selects an action aT from an action space A at time T leading to the �nal payo�s:

u(aT , θ) for the Sender and v(aT , θ) for the Receiver.

This model borrows some structure and notation from the canonical Bayesian Per-
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suasion model of Kamenica and Gentzkow (2011), and is simlar in principal, but there

are key di�erences. In Kamenica and Gentzkow's (2001) model, the Sender has full con-

trol over the signal structure which informs the Receiver about the state of the world.

In our model, the Sender only has one dimension of manipulation. They control when

information arrives which in turn controls signal structure variance. Furthermore, in

our model, the Receiver does have some control over his own memory signal structure

through the exertion of e�ort. This greater restriction on the Sender and less stringent

restriction on the Receiver makes manipulation a more di�cult task in our setting, but

it is still very possible as we shall show.

Due to the similarity with existing Bayesian Persuasion frameworks, we focus on

dynamic statements that are unique to our setting.

At the beginning of the game, the Sender determines a time t < T when the Receiver

will see it. At the time t, the Receiver gets the exogenous signal st and selects how

much e�ort nt to devote to storing that signal.

The timing of the game is as follows:

1. The Sender selects when the signal will arrive for the Receiver, t ∈ {1, 2, ..., T−1}.

2. At time t, the Receiver selects his memory e�ort nt and pays the cost c(nt).

3. The Receiver receives his exogenous signal st and remembers it.

4. At time T , the Receiver receives his memory signal mt
T .

5. The Receiver updates his prior and selects an action, aT .

6. The Sender gets a payo� of v(aT , θ) and the Receiver gets a payo� of u(aT , θ).

The Sender's strategy is a distribution over time period. The Receiver's strategy has

two parts. The �rst is a mapping from the timing of information arrival to memory

e�ort. The second is a mapping from the tuple of memory signals and the timing of

information arrival to actions. In equilibrium, the Receiver's actions must be optimal

given his beliefs. For simplicity we assume that the sender cannot change timing of

information release in response to signal realizations, although this assumption actually

is not important for the speci�c results we present.

First we consider how the alignment of preferences between the Sender and the

Receiver in�uences equilibrium.

Corollary 6. 1. If c(nt) is convex and v(•) is an increasing a�ne transformation

of u(•), there exists an uninformative timing equilibrium where the Sender will

release the information at time T − 1.
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2. If c(nt) is convex and v(•) is a decreasing a�ne transformation of u(•), there
exists an uninformative timing equilibrium where the Sender will release the in-

formation at time 1.

Proof. This result is largely trivial. Proposition then 1 guarantees that the Re-

ceiver will have a Blackwell less informative memory signal structure in period T if

the exogenous signal arrives earlier. This means that for any realization of the exoge-

nous signal, earlier information release leads to the memory signal being less Blackwell

informative about the state and therefore to a weakly lower E(u). If u and v are re-

lated by an a�ne transformation, then E(u) and E(v) are related by the same a�ne

transformation.

This result tells us that if incentives are perfectly aligned, the Sender wants to send

the information late in the game (near time T ) in order to minimize forgetting by the

Receiver.27 If incentives are perfectly misaligned, she wants to send the information

early to encourage maximum forgetfulness and reduce Receiver performance.28

It is also interesting to consider how the convexity or concavity of Sender preferences

can in�uence the timing of information release. Before we discuss such a result, however,

a de�nition is needed.

De�nition 5. We say a memory signal structure is straightforward if it is optimal after

observing any memory signal mt
T to take the action aT = mt

T .

This de�nition is identical to the one used in Kamenica and Gentzkow (2011). It

allows us to avoid considering complicated maps between the signal space and the action

space.

Using this de�nition, we present the following result.

Corollary 7. Assume c(nt) is convex. If memory signals are straightforward for all

st, nt and T − t, then

1. If v is convex in aT∀θ, there exists an uninformative timing equilibrium where the

Sender will release information at time 1.

27This assumes that the Receiver is perfectly rational other than having imperfect memory. This
may not always be the case, as discussed by Lipnowski and Mathevet (2018).

28Note that this result does not necessarily hold with non-a�ne monotone transformations. For
example, consider a case where the utility of the Sender is an increasing transformation of the Receiver's
utility. If the Sender is more risk averse than the Receiver, there are situations where the Sender might
send information early to reduce the informativeness of the Receiver's memory signal which would
encourage him to take a safe option.
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2. If v is concave in aT∀θ, there exists an uninformative timing equilibrium where

the Sender will release information at time T .

Proof. The combination of the assumed memory signal structure and straightfor-

ward signals guarantees that the average action is �xed for a given exogenous signal.

From the Proof of Corollary 6 we know that increasing T − t will essentially introduce a
garbling to the memory signal. Therefore conditional on the exogenous signal, the dis-

tribution of actions given release time t will always be a mean-preserving spread of the

conditional distribution of actions for release time t′ if t < t′. By Jensen's Inequality,

Senders with concave utility will prefer less variance and Senders with convex utility

will prefer more.

Straightforwardness and form of memory signals together �x the mean action of

the Receiver based on the exogenous signal. Given that, this Proposition is a natural

consequence of Jensen's Inequality. When the Sender has convex utility, she wants

to introduce more noise into the Receiver's actions. Since signals are straightforward,

this means introducing more noise into the signal. She can introduce more uncertainty

and noise by releasing information earlier and giving it more time to decay. When the

Sender has concave utility, however, she wants to minimize uncertainty, so she releases

information later to avoid decay.

The requirement that the memory signal structure always be straightforward is

somewhat restrictive when assuming normal signals and generally requires that the

prior contain no information or that the signal be very informative. However, the results

underlying the manipulation discussion don't require normal signals. See Appendix ??

for more details.

Note that the proofs for Corollary 6 and Corollary 7 are based on weak optimality of

information release timing. There can be other uninformative timing equilibria due to

indi�erences and trivial choices. For example, consider the case in which the Receiver

only has a single action. The Sender can send information at any time in equilibrium

without in�uencing behavior.
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